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Abstract

We introduce a method for efficient knowl-
edge distillation of transformer-based object de-
tectors. The proposed “attention distillation”
makes use of the self-attention matrices gen-
erated within the layers of the state-of-art de-
tection transformer (DETR) model. Localiza-
tion information from the attention maps of a
large teacher network are distilled into smaller
student networks capable of running at much
higher speeds. We further investigate distill-
ing spatio-temporal information captured by
3D detection transformer networks into 2D ob-
ject detectors that only process single frames.
We apply the approach to the clinically impor-
tant problem of detecting medical instruments
in real-time from ultrasound video sequences,
where inference speed is critical on computa-
tionally resource-limited hardware. We observe
that, via attention distillation, student net-
works are able to approach the detection perfor-
mance of larger teacher networks, while meet-
ing strict computational requirements. Exper-
iments demonstrate notable gains in accuracy
and speed compared to detection transformer
models trained without attention distillation.

Keywords: Knowledge Distillation, Self-
Attention, Object Detection, Transformers,
Medical Ultrasound Imaging

1. Introduction

Transformers and the self-attention mechanism
Vaswani et al. (2017) have recently permeated al-
most every area of modern deep learning. Beginning
with their tremendous success in the field of natu-
ral language processing Brown et al. (2020); Devlin

et al. (2018), transformers have also been applied to
image recognition Dosovitskiy et al. (2020) and ob-
ject detection Carion et al. (2020) tasks, as well as
graph processing Choi et al. (2020) and reinforce-
ment learning Chen et al. (2021). One shortcoming
of large transformer models is that they require ex-
tensive amounts of computation, making them slow
to train and use, particularly when inputs into the
network are large. Vision and detection transformers
that recognize and detect objects in images, respec-
tively, are particularly susceptible to the above com-
putational issues, due to the large input sizes required
by these networks. There have been several attempts
to improve the computational efficiency of the trans-
former and self-attention mechanism Touvron et al.
(2020); Wang et al. (2020); Xiong et al. (2021).

In this work, we focus on strategies to distill large
detection transformers (DETR) Carion et al. (2020)
into smaller models for the purpose of reducing model
size and speeding up inference. Our approach relies
on the observation that self-attention matrices offer
a natural and elegant means for applying knowledge
distillation to object detectors. The original knowl-
edge distillation formulation Hinton et al. (2015) al-
lows smaller student models to generalize from the
teacher by taking advantage of ‘soft target’ class
probabilities, which have higher entropy and informa-
tion content than ‘hard’ ground truth targets. Self-
attention matrices extracted from a teacher detection
transformer allow a corresponding learning mecha-
nism to distill object detectors, i.e. they offer soft
probability ‘heat maps’ that can be used for local-
ization distillation, in addition to ‘hard’ box labels.

We demonstrate the utility of the approach on the
clinically relevant task of detecting medical instru-
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Figure 1: (a) Representative ultrasound frames acquired during live needle insertion procedures on ex vivo
and human cadaver tissues. The examples highlight the difficulty of correctly identifying the needle
in the presence of noise and surrounding tissue structures. (b) Representative self-attention maps
from the detection transformer. Red boxes are ground-truth and blue boxes are predictions.

ments (needles) in real-time from ultrasound video se-
quences (Figure 1(a)). Needle detection is a uniquely
challenging problem where accuracy, speed, and com-
putational resource-efficiency are critical. We quan-
tify the benefits of attention distillation and show
that large teacher networks consisting of several en-
coder and decoders layers can be distilled to much
smaller single encoder/decoder detection transform-
ers. Experimental results suggest that it is possible to
double the number of frames per second processed by
the student network while only taking a minor perfor-
mance hit compared to using larger teacher networks.

The contributions of this work are as follows:

1. We introduce attention distillation for the state-
of-art detection transformer model by leverag-
ing self-attention matrices as an information-rich
feature representation.

2. We formulate a loss that allows a natural tran-
sition between traditional localization and class
losses and an attention distillation loss.

3. We study attention distillation as a learning
mechanism by measuring the dissimilarity (Kull-

back Leibler divergence) between student and
teacher self-attention matrices during training.

4. We investigate the specific contribution of the
attention distillation mechanism on model per-
formance, independent of other network design
choices. Empirical results indicate consistent im-
provements in performance and inference speed
compared to equivalent models trained without
attention distillation.

5. We further extend to 3D-to-2D distillation,
where spatio-temporal information learned by
a 3D teacher operating on video data is com-
pressed into a 2D student model that only pro-
cesses single frames.

6. We apply and evaluate detection transformers
and attention distillation on a relevant biomedi-
cal use case of ultrasound video detection.

Our contributions are aimed at constructing faster
and more lightweight image and video object detec-
tors. As in the original DETR model Carion et al.
(2020), we use the well-established ResNet-50 net-
work backbone; however, like DETR, our methods
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are not limited to specific backbones, and other pop-
ular convolutional architectures may be considered
based on application-specific requirements.

2. Related Prior Work

2.1. Instrument Detection in Ultrasound

In this study we aimed to demonstrate the real-world
utility of attention distillation on the problem of de-
tecting medical instruments, particularly needles, in
real-time from medical ultrasound video sequences.
This is a problem of strong clinical relevance, as nee-
dle insertions are one of the most commonly per-
formed medical procedures in point-of-care, emer-
gency, and interventional medical settings to enable
vascular access, regional anesthesia, delivery of flu-
ids and drugs, drainages, and biopsies. Ultrasound-
based needle/instrument guidance is often carried out
by trained clinical specialists, since the procedure re-
quires expertise and represents a significant injury
risk when difficulties occur. Visualization under ul-
trasound can be challenging due to the presence of
confounding tissue structures, speckle noise, and poor
instrument visibility (1(a)). Short insertions, such
as when the instrument is just entering the imaging
field, are especially problematic.

Earlier studies have proposed a range of image pro-
cessing and machine learning approaches to recognize
needles and other instruments in ultrasound imagery
Beigi et al. (2021). Techniques include use of spatial
or phase-based features Draper et al. (2000); Haci-
haliloglu et al. (2015) as well as features derived from
learning models Hatt et al. (2015); Beigi et al. (2017);
Mwikirize et al. (2018); Lee et al. (2020). Some stud-
ies have made additional use of temporal information
from ultrasound video frames Mwikirize et al. (2019);
Beigi et al. (2017). Recently, Rubin et al. (2021)
compared video-based deep learning approaches, in-
cluding two-stream neural networks and 3D spatio-
temporal convolution approaches.

Currently, processing speed and computational re-
source limitations remain major challenges in the ef-
ficient deployment of existing detection models for
real-time instrument guidance. In order for the over-
all pipeline (which typically involves image acquisi-
tion and beamforming, low-level pre-processing, com-
pression and scan conversion, model inference, post-
processing, and visual rendering/display) to be per-
formed in real-time during live scanning, the speed
of the model inference step must often exceed 50-100

frames per second to avoid becoming a bottleneck.
Increasing the detection power of the models, for ex-
ample by encoding 3D spatio-temporal information
or using larger and more powerful architectures such
as DETR Carion et al. (2020), further exacerbates
the computational demand.

2.2. Knowledge and Attention Distillation

Knowledge distillation Buciluǎ et al. (2006); Hin-
ton et al. (2015) has been used as a model com-
pression technique within a variety of contexts and
applications Gupta et al. (2016); Luo et al. (2018);
Romero et al. (2014); Zagoruyko and Komodakis
(2017). Several studies have applied knowledge dis-
tillation within the context of video representation
learning to distill motion features from an optical
flow network to RGB-only networks Crasto et al.
(2019); Stroud et al. (2020). Liu et al. (2020) went
one step further and used attention distillation to
distill motion knowledge into an RGB network us-
ing the soft attention map of a flow-based teacher
network. Zagoruyko and Komodakis (2017) investi-
gated attention transfer from a teacher network to
smaller student networks using activation-based and
gradient-based spatial attention maps. They focused
on image classification tasks where the teacher was
a deeper residual network and an `2 attention trans-
fer loss was applied. Knowledge distillation strate-
gies specifically for transformers were investigated in
Touvron et al. (2021) where distillation tokens were
introduced for teacher-student networks.

2.3. Distilling Object Detectors

While the above works focused primarily on action
recognition and related tasks, there have also been
prior attempts to distill object detectors. Chen et al.
(2017) introduced a number of concepts for distill-
ing detectors, including a weighted cross-entropy loss
to address class imbalance, a teacher bounded loss
to handle the regression component, and adaptation
layers to learn from intermediate teacher distribu-
tions. Wang et al. (2019) investigated localization
distillation by selecting anchor boxes that are near
ground truth bounding boxes and forcing a student
network to imitate a larger Faster R-CNN Ren et al.
(2015) detector. They compared their approach to
hint learning Romero et al. (2014). More recently,
Guo et al. (2021) showed improved object detection
results for distilled Faster R-CNN and RetinaNet Lin
et al. (2017) models using decoupled features. All of
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Figure 2: Overview of attention distillation for detection transformers. Self-attention matrices of large 2D
or 3D teacher networks are used to distill localization information to smaller student networks
consisting of fewer encoder and decoder layers. Attention distillation can take place within the
encoder or decoder layers (in this work, experiments focused on encoder -based distillation). Class
label distillation can also optionally be applied.

the above works relied on single and two-stage detec-
tors and hence did not make use of the self-attention
matrices - which are naturally produced by detection
transformers - for localization distillation.

3. Detection Transformers

We utilize DETR Carion et al. (2020) as a state-of-
art object detection architecture. The DETR archi-
tecture demonstrates several benefits over traditional
single and two-stage object detectors.

• First, the DETR architecture is conceptually
simple. It consists of a backbone convolutional
neural network (e.g. ResNet50) that downsam-
ples an input image to produce a tensor of acti-
vations that are then processed by an encoder-
decoder transformer architecture that directly
predicts a set of bounding boxes. There is no
need for anchor boxes or non-maximum suppres-
sion. Instead, the architecture relies on bipartite
matching and imposes a parameter, N , that lim-
its the maximum number of objects that can be
detected in an image.

• Second, DETR has shown improvements in accu-
racy and speed compared to two-stage detectors,
such as Faster R-CNN, on common object detec-
tion benchmark datasets Carion et al. (2020).

• Finally, the self-attention maps produced by de-
tection transformers provide a high-content and
visually explainable representation of object lo-
cations and appearances. For biomedical ap-
plications, these maps can increase the trans-
parency of automated medical imaging systems,
helping end-users to understand the salient fea-
tures used by the model for prediction and pro-
viding a mechanism for human clinical review.

Figure 1(b) shows examples of self-attention maps
for four representative, randomly selected ultrasound
frames containing needle objects. For our purposes,
the bipartite matching required by the DETR archi-
tecture is trivial, as there is either no object (∅) or at
most only one object to detect within an ultrasound
frame, hence we fix this limit to be N = 1. For
a single instance, yi, ground truth class labels and
bounding box information is denoted by yi = (ci, bi),
where ci is either ∅ or the target class label, i.e. nee-
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dle, and bi ∈ [0, 1]4 is a vector that defines the stan-
dardized centerx, centery, width and height for the
ground truth bounding box. The probability of pre-
dicting class ci ∈ {∅, 1}, where 1 is the object class,

is given by p̂i(ci) and b̂i is the predicted bounding
box. The bounding box loss (as defined in Carion
et al. (2020)) is a linear combination of `1 loss and
the scale-invariant generalized IoU loss Rezatofighi
et al. (2019), given by Eq. (1), where λiou, λL1 are
hyper-parameters that control mixing between the
loss terms:

Lbox

(
bi, b̂i

)
= λiou Liou

(
bi, b̂i

)
+ λL1

∥∥∥bi − b̂i∥∥∥
1
(1)

Eq. (1) combines the two losses, as `1 alone will
result in different scales for small and large boxes.

4. Attention Distillation

We apply attention distillation by making use of
self-attention matrices generated within the encoder-
decoder detection transformer architecture. Fig-
ure 2 shows an overview of the approach. Recall,
that a backbone convolutional neural network (e.g.
ResNet50) processes an input image and learns a
downsampled feature representation, f ∈ RC×H×W .
The number of channels in the learned representation
is first reduced using 1x1 convolution and then the
H and W dimensions flattened to give the sequence
(x1, . . . , xn), where xi ∈ RHW is fed to the detection
transformer encoder, along with positional encodings
Carion et al. (2020).

Multi-headed scaled dot-product attention
Vaswani et al. (2017) is applied to learned query and
key matrices (Q and K, respectively) by multiplying
each xi in the sequence by learned network weight
matrices, WQ and WK .

A = softmax

(
QKT

√
dk

)
(2)

In Eq. (2), A is the attention matrix and dk is the
size of the multi-headed attention hidden dimension
chosen as a hyper-parameter. The idea behind atten-
tion distillation is to force the self-attention matrix
of a small student network, As, to be similar to that
of a larger teacher network, At. We use the Kullback
Leibler divergence between student and teacher self-
attention matrices to accomplish this, as illustrated
in Eq. (3).

Ldistill =(1− α) · Lbox

(
bi, b̂i

)
+

α ·
(
KL

(
As

i‖At
i

)
+ T 2 · KL

(
σ(
p̂si
T

)‖σ(
p̂ti
T

)

))
(3)

In Eq. (3), α is a hyper-parameter that controls
mixing between the bounding box loss, Lbox, and the
attention distillation loss. Recall that bi and b̂i re-
fer to the ground truth and predicted bounding box
coordinates, and p̂si , p̂

t
i are class prediction proba-

bilities given by the student and teacher networks,
respectively. The first component of the attention
distillation loss, KL (As

i‖At
i), applies knowledge dis-

tillation to the self-attention maps created by teacher
and student detection transformers. It attempts to
match the distribution of the attention maps between
teacher and student networks. The attention maps
can come from either the encoder or decoder. The
second component of the attention distillation loss
optionally applies knowledge distillation to the class

label predictions, T 2 ·KL
(
σ(

p̂s
i

T )‖σ(
p̂t
i

T )
)

, where T is a

temperature hyper-parameter that controls smooth-
ing, as in Hinton et al. (2015) and σ is the softmax op-
eration. The overall loss, Ldistill, is applied to mini-
batches of data samples.

Attention distillation can also be used to distill a
3D detector, designed to process a temporal sequence
of multiple frames, into a 2D student model that pro-
cesses only a single frame. The additional size and
complexity of the 3D detectors, and their reliance on
3D convolution operations, leads to increased pro-
cessing times compared to 2D counterparts. 3D-to-
2D distillation allows a 2D student model to ingest
temporal information from a 3D teacher, while main-
taining low computational complexity.

5. Results

5.1. Data

Ultrasound video sequences acquired from ∼12,200
needle insertions (∼2 million individual frames) were
used for model training and evaluation. Data were
collected over a period of two years from ex vivo tis-
sues (porcine, bovine, and chicken) as well as human
cadavers, and comprised a range of ultrasound trans-
ducers, systems, ultrasound imaging settings (e.g.
gain, depth, and tissue-specific presets), needle types,
needle sizes, insertion angles, and bevel orientations.
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Figure 3: Results for a sweep over α values from 0.5 – 0.9 using a DETR-R50-1/1 student network with
attention distillation applied at the final encoder layer. Baseline at α = 0 (no distillation) is also
shown. (a) mAP results on test dataset. (b) mAPshort on a challenging dataset containing only
short insertions.

Full video sequences, each typically several hun-
dred frames in length (up to 60 sec in time) were
divided into short 30-frame clips spanning about 1
sec in time. Ground-truth labels were generated in
the form of bounding box localizations for the last
frame of each clip (example labeled frames are shown
in Figure 1(b)). A total of 30,770 labeled video clips
were used as the training set, and 5,023 labeled clips
from independent data collection experiments were
used for evaluation. In both sets, approximately 60%
of frames were labeled with the needle present, and
the remaining 40% were negative, representing a clin-
ically realistic prevalence. All 2D models took as in-
put the last frame of each video clip, which contained
an associated label. 3D models took all or part of the
entire video clip, depending on the model’s input size
along the third dimension. All networks were trained
using PyTorch for 50 total epochs on a P100 GPU.

5.2. 2D-to-2D Attention Distillation for
Images

Our teacher network (DETR-R50-6/6) is a detec-
tion transformer with ResNet-50 backbone and six
encoder and decoder layers. We trained smaller stu-
dent networks (DETR-R50-1/1) consisting of a single
encoder and decoder. We perform a sweep over the
α hyper-parameter given in Eq. (3) to control how
much of the attention distillation loss to include dur-

ing training. We selected α to be between the values
0.5 – 0.9, as well as α = 0, i.e. no attention distil-
lation. To evaluate the exact contribution of atten-
tion distillation to the performance of the network,
we fix the parameters of the R50 backbone and only
train the encoder-decoder transformer sub-network.
Furthermore, we only rely on the attention distilla-
tion component of the loss function and omit the op-
tional knowledge distillation from class label predic-
tions. The size of the transformer’s hidden dimension
was 256 and a total of 8 attention heads were used.

Figure 3 shows mAP50 (left) and mAP50
short (right)

results for a series of attention distilled student mod-
els where α varies between values 0.5 – 0.9 (x-axis).
The mAP50

short results refer to the particularly chal-
lenging use-case of short needle insertions, where the
needle tip is just barely entering the ultrasound field
of view. In these experiments, we chose to apply at-
tention distillation on the final layer of the encoder
stack, A ∈ RHW×HW . The results of encoder-based
attention distillation are compared to the baseline
model with α=0 (flat lines).

Figure 3 shows that the use of attention distilla-
tion leads to improved mAP50 and mAP50

short scores
compared to a baseline model trained on localization
labels alone. In each case α=0.7 gives the best per-
formance (0.615 vs. 0.584 and 0.393 vs. 0.357 for
mAP50 and mAP50

short, respectively).
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Model Parameters GMac FPS mAP50 mAP50
short

Faster R-CNN 41,299,161 134.1 19 0.773 0.681
DETR-R50-1/1 (baseline, α=0) 27,007,174 14.4 53 0.584 0.357

DETR-R50-1/1 (student) 27,007,174 14.4 53 0.615 0.393
DETR-R50-2/2 (student) 29,900,998 14.6 43 0.643 0.437
DETR-R50-3/3 (student) 32,794,822 14.8 38 0.633 0.445
DETR-R50-6/6 (teacher) 41,476,294 15.3 26 0.655 0.467

Table 1: Model sizes, inference speeds, and average precision results of attention distilled student DETR
models compared to a large 2D teacher model. DETR-R50-n/n refers to the model type where n/n
indicates the number of encoder and decoder layers. All student models were trained with α = 0.7.
For comparison, a baseline model trained without attention distillation (α = 0) is also shown, as
well as comparison to a Faster R-CNN model. The reported inference speeds (FPS) were based on
model evaluation on a P100 GPU.

Model Parameters GMac FPS mAP50 mAP50
short

DETR-R50-1/1 (baseline, α=0) 27,007,174 14.4 53 0.584 0.357
DETR-R50-1/1 (student) 27,007,174 14.4 53 0.617 0.366
DETR-R50-2/2 (student) 29,900,998 14.6 43 0.639 0.425
DETR-R50-3/3 (student) 32,794,822 14.8 38 0.669 0.450

3D-DETR-R50-6/6 (teacher) 41,477,149 15.7 21 0.784 0.595

Table 2: Model sizes, inference speeds, and average precision results for attention distilled student DETR
models compared to a large 3D teacher model that incorporates a history of temporal information.
All student models were trained with α = 0.7. The reported inference speeds (FPS) were based on
model evaluation on a P100 GPU.
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Figure 4: Attention distillation loss, i.e. the KL di-
vergence between teacher and student self-
attention maps, on test data. For α=0
(no distillation), there remains a large gap
compared to student networks trained with
attention distillation α ∈ {0.5 . . . 0.9}.

Table 1 summarizes model sizes, inference speeds,
and average precision results for a series of student
networks, and compares these to the DETR-R50-
6/6 teacher model, a state-of-the-art Faster R-CNN
model, and a baseline model trained without at-
tention distillation. Here, we trained student mod-
els starting with single (1/1) encoder-decoder pairs
up to 3/3. All student models were trained with
the attention distillation hyper-parameter fixed to
α=0.7. We can see that the student models approach
the mAP50 and mAP50

short performance of the full
teacher model while improving upon the processing
frame rate. In particular, the DETR-R50-2/2 stu-
dent model achieves a mAP50 of 0.643 vs. 0.655 for
the full teacher model, while increasing the frame rate
from 26 to 43 FPS. While the Faster R-CNN model
achieves strong detection results (0.773 mAP50 and
0.681 and mAP50

short, its heavy computational cost
and slow processing speeds (134.1 GMac, 19 FPS)
make it infeasible for use on resource-limited ultra-
sound hardware. Furthermore, all the parameters
of the Faster R-CNN model are trainable, whereas
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Figure 5: 3D attention distillation results for a sweep over α values from 0.5 – 0.9, again with attention
distillation applied at the final encoder layer. Baseline at α = 0 (no distillation) is also shown. (a)
mAP results on test dataset. (b) mAPshort on challenge dataset containing only short insertions.

we fix the weights of the R50 backbone for the
DETR models and trained only the transformer sub-
networks in order to study the attention distillation
mechanism in isolation).

It could be expected that without employing at-
tention distillation, the distribution of a student
self-attention map would naturally start to resemble
that of a fully trained teacher network over training
epochs. Figure 4 plots the KL divergence between
student and teacher self-attention matrices, i.e. the
attention loss, for a baseline model with α=0 (top
blue curve) as well as a number of student mod-
els trained with α ∈ {0.5 . . . 0.9} (lower curves). It
can be seen that the KL divergence decreases sim-
ilarly for all student models where α > 0, whereas
the attention loss is significantly higher in the base-
line model, indicating dissimilar attention distribu-
tions compared to the teacher when α=0.

5.3. 3D-to-2D Attention Distillation for
Videos

We further extend the concept of attention distilla-
tion to compress a 3D detection transformer, which
takes into account a temporal history of ultrasound
frames, into a 2D student model that processes single
frames independently. Here, we utilized a 3D-DETR-
R50-6/6 model as the teacher network. The network
applies a series of k=6 spatio-temporal 3D convolu-
tions to a stack of ultrasound video frames. The effect

is that the temporal dimension is convolved out to ar-
rive at a 2D feature map with a singular temporal di-
mension, k=1, while image width and height remains
unchanged. The learned feature map is then fed to
the remainder of the network that has the same ar-
chitecture as the 2D DETR-R50-6/6 teacher network
described previously.

We emphasize that the detection problem is exactly
the same as in the 2D-to-2D attention distillation ex-
periments (Section 5.2), as is the architecture and
number of parameters of the student networks. The
only thing that has changed is that the teacher net-
work now has access to a temporal history of frames,
which it encodes via spatio-temporal convolution to
inform detection predictions. As before, we fix the
weights of the R50 backbone and train only the trans-
former sub-network.

Figure 5 shows the results of applying attention dis-
tillation using a DETR-R50-1/1 student network and
a sweep of α between 0.5 to 0.9, with the 3D-DETR-
R50-6/6 network as the teacher. Also shown is a
comparison to the baseline network where no atten-
tion distillation is used, i.e. α=0. As in the 2D-to-2D
experiments, we applied attention distillation on the
final encoder layer. Once again, models trained with
attention distillation are observed to outperform the
baseline model trained on localization labels alone.

Finally, we explored the effects of increasing the
capacity of the 3D-to-2D student networks. Table
2 shows speed and average precision results for stu-
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dent networks (α=0.7) that range from 1/1 encoder-
decoder layers to 3/3. The full 3D-DETR-R50-6/6
teacher model achieved scores of 0.784 and 0.595
for mAP50 and mAP50

short, respectively. Meanwhile,
as we increase the capacity of the 2D student net-
works, mAP50 and mAP50

short scores approach that of
the 3D teacher network. Interestingly, we also notice
that the mAP50 score of the 3D distilled DETR-R50-
3/3 student network outperforms the full 2D-DETR-
R50-6/6 teacher network reported in Table 1 (0.669
vs. 0.655 ). Visual detection results for the baseline
(α=0), as well as 2D and 3D student and teacher
models are given in Appendix A.

6. Discussion and Future Work

Overall, our experiments show consistent improve-
ments in performance when attention distillation is
employed compared to baseline models trained only
on localization information (α= 0). As expected, stu-
dent models improve as extra encoder and decoder
layers are added to the transformer sub-network.
Interestingly, however, the capacity of the network
alone does not account for the observed improve-
ments. In particular, the 3D-to-2D DETR-R50-
3/3 student network (trained with a 3D temporally-
aware teacher) outperforms its counterpart 2D-to-2D
student model (trained with a 2D teacher) (0.669
vs. 0.633 mAP50 and 0.450 vs. 0.445 mAP50

short) de-
spite having the same number of parameters. Fur-
thermore, the student model trained with a 3D
teacher achieves higher detection performance than
even the full 2D teacher (0.669 vs. 0.655 mAP50).

There are several limitations in this work, and ar-
eas for future investigation:

1. Self-attention maps of the teacher and student
network are required to have the same dimen-
sion, which limits the flexibility of the backbone
network. Adaptation layers, such as proposed in
Guo et al. (2021), could be one way to support
attention maps of different dimensionality.

2. The current work applied attention distillation
at the final encoder layer in the detection trans-
former. Interestingly, we did not see consistent
improvements when we instead applied attention
distillation to the final decoder layer, and more
investigation is needed to understand why. Fu-
ture work will also evaluate whether performance
can be further improved for student networks
that consist of more than one encoder/decoder

layer by applying attention distillation within
each layer (rather than only the final layer).

3. Presently, dissimilarity between teacher and stu-
dent self-attention maps was incorporated into
the loss function via KL divergence. Other simi-
larity measures, such as based on optimal trans-
port Peyré et al. (2019), could be attempted.

4. Our models were only required to detect a single
needle or no needle within each frame, i.e.N = 1.
Detection performance for multiple and varied
objects should be evaluated.

5. To isolate the contribution of the attention distil-
lation mechanism, we applied a single consistent
backbone network (ResNet50) across all experi-
ments, and we fixed the parameters of the back-
bone such that only the transformer sub-network
was influenced by distillation during training. It
may be possible to improve performance further
by optimizing the full network end-to-end. Gen-
eralization to other state-of-art backbone archi-
tectures, e.g. Ren et al. (2015); Chollet (2017);
Gholami et al. (2018); Howard et al. (2019);
Wang et al. (2021), should also be investigated.

6. Further progress toward clinical translation can
be achieved by integrating the student models on
real ultrasound systems and evaluating inference
times during live clinical procedures.

7. Finally, validation of the approach was demon-
strated on an ultrasound dataset selected for its
clinical relevance and challenging nature. Fur-
ther studies are needed to assess attention distil-
lation across a wide range of ultrasound datasets
as well as data from other imaging modalities.

7. Conclusions

We have presented an approach for distilling
transformer-based object detectors using a novel at-
tention distillation learning mechanism. Empirical
results showed notable gains in accuracy and speed
over baseline models trained on localization labels
only. We demonstrated the utility of attention distil-
lation for the challenging and clinically-relevant prob-
lem of medical instrument detection in ultrasound
video. However, we posit that the approach may have
broader applicability to other biomedical image and
video detection tasks where speed is critical and com-
putational resources are constrained.
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Hervé Jégou. Training data-efficient image trans-
formers & distillation through attention. In Inter-
national Conference on Machine Learning, pages
10347–10357. PMLR, 2021.

11

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf


Attention Distillation for Detection Transformers

Appendix A. Detection Results

Figure A.1: Qualitative detection results for baseline (α=0), 2D student and teacher models and 3D student
and teacher models, respectively. Ground truth bounding boxes are shown in red, student
predictions in orange and teacher predictions in green.

12


	Introduction
	Related Prior Work
	Instrument Detection in Ultrasound
	Knowledge and Attention Distillation
	Distilling Object Detectors

	Detection Transformers
	Attention Distillation
	Results
	Data
	2D-to-2D Attention Distillation for Images
	3D-to-2D Attention Distillation for Videos

	Discussion and Future Work
	Conclusions

