
Attention Distillation for Detection Transformers:
Application to Real-Time Video Object Detection in Ultrasound

Introduction
• We introduce a method for efficient knowledge distillation of 

transformer-based object detectors.
• Attention distillation makes use of the self-attention matrices 

generated in the layers of detection transformer (DETR) models.
• Localization information from the attention maps of a large 

teacher network are distilled into smaller student networks 
capable of running at much higher speeds.

• We apply the approach to the clinically important problem of 
detecting medical instruments (e.g. needle insertion procedures) 
in real-time from ultrasound video sequences, where inference 
speed is critical on computationally resource-limited hardware.
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Data
• Ultrasound video sequences acquired from ∼12,200 needle 

insertions (∼2 million individual frames) were used for model 
training and evaluation. 

• Data were collected over two years from ex vivo tissues (porcine, 
bovine, and chicken) as well as human cadavers, and comprised 
a range of ultrasound transducers, systems, ultrasound imaging 
settings (gain, depth, and tissue presets), needle types, needle 
sizes, insertion angles, and bevel orientations.

• A total of 30,770 labeled video clips were used as the training 
set, and 5,023 labeled clips from independent data collection 
experiments were used for evaluation.

Fig. 1. (a) Representative ultrasound frames acquired during live needle insertion procedures on ex vivo and human cadaver 
tissues. The examples highlight the difficulty of correctly identifying the needle in the presence of noise and surrounding tissues. 
(b) Representative self-attention maps from the detection transformer. Red boxes are ground-truth and blue boxes are predictions.

Attention Distillation

• We apply attention distillation by making use of self-attention matrices 
generated within the encoder-decoder detection transformer architecture.

• Multi-headed scaled dot-product attention Carion et al. (2020) is applied 
to learned query, Q, and key, K, matrices.

• A is the attention matrix and dk is the size of the multi-headed attention 
hidden dimension chosen as a hyper-parameter.

• In the equation above, α is a hyper-parameter that controls mixing 
between the bounding box loss and the attention distillation loss, where 
bi and "𝑏i refer to the ground truth and predicted bounding box 
coordinates, and $𝑝i

s, $𝑝i
t are class prediction probabilities given by the 

student and teacher networks, respectively. 
• The first component of the loss applies knowledge distillation to the self-

attention maps created by teacher and student detection transformers. 
• The second component of the loss applies knowledge distillation to the 

class label predictions. T is a temperature hyper-parameter that controls 
smoothing, as in Hinton et al. (2015), and 𝜎 is the softmax operation. 
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is given by p̂i(ci) and b̂i is the predicted bounding
box. The bounding box loss (as defined in Carion
et al. (2020)) is a linear combination of `1 loss and
the scale-invariant generalized IoU loss Rezatofighi
et al. (2019), given by Eq. (1), where �iou, �L1 are
hyper-parameters that control mixing between the
loss terms:

Lbox

⇣
bi, b̂i

⌘
= �iou Liou

⇣
bi, b̂i

⌘
+ �L1

���bi � b̂i

���
1
(1)

Eq. (1) combines the two losses, as `1 alone will
result in di↵erent scales for small and large boxes.

4. Attention Distillation

We apply attention distillation by making use of
self-attention matrices generated within the encoder-
decoder detection transformer architecture. Fig-
ure 2 shows an overview of the approach. Recall,
that a backbone convolutional neural network (e.g.
ResNet50) processes an input image and learns a
downsampled feature representation, f 2 RC⇥H⇥W .
The number of channels in the learned representation
is first reduced using 1x1 convolution and then the
H and W dimensions flattened to give the sequence
(x1, . . . , xn), where xi 2 RHW is fed to the detection
transformer encoder, along with positional encodings
Carion et al. (2020).

Multi-headed scaled dot-product attention
Vaswani et al. (2017) is applied to learned query and
key matrices (Q and K, respectively) by multiplying
each xi in the sequence by learned network weight
matrices, WQ and W

K .
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In Eq. (2), A is the attention matrix and dk is the
size of the multi-headed attention hidden dimension
chosen as a hyper-parameter. The idea behind atten-
tion distillation is to force the self-attention matrix
of a small student network, As, to be similar to that
of a larger teacher network, At. We use the Kullback
Leibler divergence between student and teacher self-
attention matrices to accomplish this, as illustrated
in Eq. (3).
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In Eq. (3), ↵ is a hyper-parameter that controls

mixing between the bounding box loss, Lbox, and the
attention distillation loss. Recall that bi and b̂i re-
fer to the ground truth and predicted bounding box
coordinates, and p̂

s

i
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are class prediction proba-

bilities given by the student and teacher networks,
respectively. The first component of the attention
distillation loss, KL (As
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kAt
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), applies knowledge dis-

tillation to the self-attention maps created by teacher
and student detection transformers. It attempts to
match the distribution of the attention maps between
teacher and student networks. The attention maps
can come from either the encoder or decoder. The
second component of the attention distillation loss
optionally applies knowledge distillation to the class
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, where T is a

temperature hyper-parameter that controls smooth-
ing, as in Hinton et al. (2015) and � is the softmax op-
eration. The overall loss, Ldistill, is applied to mini-
batches of data samples.

Attention distillation can also be used to distill a
3D detector, designed to process a temporal sequence
of multiple frames, into a 2D student model that pro-
cesses only a single frame. The additional size and
complexity of the 3D detectors, and their reliance on
3D convolution operations, leads to increased pro-
cessing times compared to 2D counterparts. 3D-to-
2D distillation allows a 2D student model to ingest
temporal information from a 3D teacher, while main-
taining low computational complexity.

5. Results

5.1. Data

Ultrasound video sequences acquired from ⇠12,200
needle insertions (⇠2 million individual frames) were
used for model training and evaluation. Data were
collected over a period of two years from ex vivo tis-
sues (porcine, bovine, and chicken) as well as human
cadavers, and comprised a range of ultrasound trans-
ducers, systems, ultrasound imaging settings (e.g.
gain, depth, and tissue-specific presets), needle types,
needle sizes, insertion angles, and bevel orientations.
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Results
2D-to-2D Attention Distillation for Images 
• Our teacher network (DETR-R50-6/6) is a detection transformer with ResNet-50 backbone 

and six encoder and decoder layers. We trained smaller student networks (DETR-R50-1/1) 
comprising an identical backbone but consisting of only a single encoder and decoder.
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Fig. 3. Results for a sweep 
over α values from 0.5 – 0.9 
using a DETR-R50-1/1 
student network with 
attention distillation applied 
at the final encoder layer. 
Baseline at α = 0 (no 
distillation) also shown. 

(a) mAP on test dataset 
(5,023 video clips).

(b) mAPshort on a 
challenging dataset of short 
needle insertions.

3D-to-2D Attention Distillation for Videos
• We apply attention distillation to compress a 3D detection transformer, which infers on a 

video sequence, into a 2D student model that processes single frames independently.

Attention Distillation for Detection Transformers

Model Parameters GMac FPS mAP
50

mAP
50
short

Faster R-CNN 41,299,161 134.1 19 0.773 0.681
DETR-R50-1/1 (baseline, ↵=0) 27,007,174 14.4 53 0.584 0.357

DETR-R50-1/1 (student) 27,007,174 14.4 53 0.615 0.393
DETR-R50-2/2 (student) 29,900,998 14.6 43 0.643 0.437
DETR-R50-3/3 (student) 32,794,822 14.8 38 0.633 0.445

DETR-R50-6/6 (teacher) 41,476,294 15.3 26 0.655 0.467

Table 1: Model sizes, inference speeds, and average precision results of attention distilled student DETR
models compared to a large 2D teacher model. DETR-R50-n/n refers to the model type where n/n
indicates the number of encoder and decoder layers. All student models were trained with ↵ = 0.7.
For comparison, a baseline model trained without attention distillation (↵ = 0) is also shown, as
well as comparison to a Faster R-CNN model. The reported inference speeds (FPS) were based on
model evaluation on a P100 GPU.

Model Parameters GMac FPS mAP
50

mAP
50
short

DETR-R50-1/1 (baseline, ↵=0) 27,007,174 14.4 53 0.584 0.357
DETR-R50-1/1 (student) 27,007,174 14.4 53 0.617 0.366
DETR-R50-2/2 (student) 29,900,998 14.6 43 0.639 0.425
DETR-R50-3/3 (student) 32,794,822 14.8 38 0.669 0.450

3D-DETR-R50-6/6 (teacher) 41,477,149 15.7 21 0.784 0.595

Table 2: Model sizes, inference speeds, and average precision results for attention distilled student DETR
models compared to a large 3D teacher model that incorporates a history of temporal information.
DETR-R50-n/n refers to the model type where n/n indicates the number of encoder and decoder
layers. All student models were trained with ↵ = 0.7. For comparison, a baseline model trained
without attention distillation (↵ = 0) is also shown. The reported inference speeds (FPS) were
based on model evaluation on a P100 GPU.

Figure 3 shows that the use of attention distilla-
tion leads to improved mAP50 and mAP50

short
scores

compared to a baseline model trained on localization
labels alone. In each case ↵=0.7 gives the best per-
formance (0.615 vs. 0.584 and 0.393 vs. 0.357 for
mAP50 and mAP50

short
, respectively).

Table 1 summarizes model sizes, inference speeds,
and average precision results for a series of student
networks, and compares these to the DETR-R50-
6/6 teacher model, a state-of-the-art Faster R-CNN
model, and a baseline model trained without at-
tention distillation. Here, we trained student mod-
els starting with single (1/1) encoder-decoder pairs
up to 3/3. All student models were trained with
the attention distillation hyper-parameter fixed to
↵=0.7. We can see that the student models approach
the mAP50 and mAP50

short
performance of the full

teacher model while improving upon the processing
frame rate. In particular, the DETR-R50-2/2 stu-
dent model achieves a mAP50 of 0.643 vs. 0.655 for

the full teacher model, while increasing the frame rate
from 26 to 43 FPS. While the Faster R-CNN model
achieves strong detection results (0.773 mAP50 and
0.681 and mAP50

short
, its heavy computational cost

and slow processing speeds (134.1 GMac, 19 FPS)
make it infeasible for use on resource-limited ultra-
sound hardware. Furthermore, all the parameters
of the Faster R-CNN model are trainable, whereas
we fix the weights of the R50 backbone for the
DETR models and trained only the transformer sub-
networks in order to study the specific contribution
of the attention distillation mechanism on model per-
formance.

It could be expected that without employing at-
tention distillation, the distribution of a student
self-attention map would naturally start to resemble
that of a fully trained teacher network over training
epochs. Figure 4 plots the KL divergence between
student and teacher self-attention matrices, i.e. the
attention loss, for a baseline model with ↵=0 (top
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Fig. 4. 3D attention 
distillation results for a 
sweep over α values from 
0.5 – 0.9, again with 
attention distillation applied 
at the final encoder layer. 
Baseline at α = 0 (no 
distillation) also shown.

(a) mAP on test dataset 
(5,023 video clips)..

(b) mAPshort on a 
challenging dataset of short 
needle insertions.

Tables 1 & 2. Model sizes, inference speeds, and mAP of attention distilled student DETR models compared to a large 2D teacher model
(upper) and 3D teacher model (lower). DETR-R50-n/n refers to the model type, where n/n indicates the number of encoder and decoder
layers. All student models were trained with α =0.7. For comparison, a baseline model trained without attention distillation (α = 0) is also
shown, as well as comparison to a Faster R-CNN model. Reported inference speeds (FPS) are based on model inference on a P100 GPU.

Fig. 2. Overview of attention distillation for detection transformers. Self-attention matrices of large 2D or 3D teacher networks
are used to distill localization information to smaller student networks consisting of fewer encoder and decoder layers.


