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Introduction Attention Distillation Results
- We introduce a method for efficient knowledge distillation of Teacher model 2D-to-2D Attention Distillation for Images
transformer-based object detectors. Encoder Decoder e QOur teacher network (DETR-R50-6/6) is a detection transformer with ResNet-50 backbone

o Attention distillation makes use of the self-attention matrices
generated in the layers of detection transformer (DETR) models.

and six encoder and decoder layers. We trained smaller student networks (DETR-R50-1/1)
comprising an identical backbone but consisting of only a single encoder and decoder.
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« Ultrasound video sequences acquired from ~12,200 needle rw [mg Ls J
insertions (~2 million individual frames) were used for model 3D-to-2D Attention Distillation for Videos
Encoder Decoder

training and evaluation. Student model - We apply attention distillation to compress a 3D detection transformer, which infers on a
» Data were collected over two years from ex vivo tissues (porcine, uaent mode video sequence, into a 2D student model that processes single frames independently.
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Fig. 1. (a) Representative ultrasound frames acquired during live needle insertion procedures on ex vivo and human cadaver
tissues. The examples highlight the difficulty of correctly identifying the needle in the presence of noise and surrounding tissues.
(b) Representative self-attention maps from the detection transformer. Red boxes are ground-truth and blue boxes are predictions.

coordinates, and p;8, pit are class prediction probabilities given by the
student and teacher networks, respectively.

The first component of the loss applies knowledge distillation to the self-
attention maps created by teacher and student detection transformers.
The second component of the loss applies knowledge distillation to the
class label predictions. T is a temperature hyper-parameter that controls
smoothing, as in Hinton et al. (2015), and ¢ is the softmax operation.

Tables 1 & 2. Model sizes, inference speeds, and mAP of attention distilled student DETR models compared to a large 2D teacher model
(upper) and 3D teacher model (lower). DETR-R50-n/n refers to the model type, where n/n indicates the number of encoder and decoder
layers. All student models were trained with a =0.7. For comparison, a baseline model trained without attention distillation (a = 0) is also
shown, as well as comparison to a Faster R-CNN model. Reported inference speeds (FPS) are based on model inference on a P100 GPU.
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