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The state-of-the-art within Artificial Intelligence has
directly benefited from research conducted within the
computer poker domain. One such success has been
the advancement of bottom up equilibrium finding al-
gorithms via computational game theory. On the other
hand, alternative top down approaches, that attempt
to generalise decisions observed within a collection of
data, have not received as much attention. In this work
we employ a top down approach in order to construct
case-based strategies within three computer poker do-
mains. Our analysis begins within the simplest vari-
ation of Texas Hold’em poker, i.e. two-player, limit
Hold’em. We trace the evolution of our case-based ar-
chitecture and evaluate the effect that modifications
have on strategy performance. The end result of our
experimentation is a coherent framework for produc-
ing strong case-based strategies based on the observa-
tion and generalisation of expert decisions. The lessons
learned within this domain offer valuable insights, that
we use to apply the framework to the more complicated
domains of two-player, no-limit Hold’em and multi-
player, limit Hold’em. For each domain we present re-
sults obtained from the Annual Computer Poker Com-
petition, where the best poker agents in the world are
challenged against each other. We also present results
against human opposition.
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1. Introduction

The state-of-the-art within Artificial Intelli-
gence (AI) research has directly benefited from re-
search conducted within the computer poker do-
main. Perhaps its most notable achievement has
been the advancement of equilibrium finding al-
gorithms via computational game theory. State-
of-the-art equilibrium finding algorithms are now
able to solve mathematical models that were once

prohibitively large. Furthermore, empirical results
tend to support the intuition that solving larger
models results in better quality strategies1. How-
ever, equilibrium finding algorithms are only one
of many approaches available within the computer
poker test-bed. Alternative approaches such as im-
perfect information game tree search [8] and, more
recently, Monte-Carlo tree search [36] have also re-
ceived attention from researchers in order to han-
dle challenges within the computer poker domain
that cannot be suitably addressed by equilibrium
finding algorithms, such as dynamic adaptation to
changing game conditions.

The algorithms mentioned above take a bottom
up approach to constructing sophisticated strate-
gies within the computer poker domain. While
the details of each algorithm differ, they roughly
achieve their goal by enumerating (or sampling)
a state space together with its pay-off values in
order to identify a distribution over actions that
achieves the greatest expected value. An alterna-
tive top down procedure attempts to construct so-
phisticated strategies by generalising decisions ob-
served within a collection of data. This lazier top
down approach offers its own set of problems in
the domain of computer poker. In particular, any
top down approach is a slave to its data, so quality
data is a necessity. While massive amounts of data
from online poker sites is available [25], the quality
of the decisions contained within this data is usu-
ally questionable. The imperfect information world
of the poker domain can often mean that valuable
information may be missing from this data. More-
over, the stochastic nature of the poker domain en-
sures that it is not enough to simply rely on out-
come information in order to determine decision
quality.

Despite the problems described above, top down
approaches within the computer poker domain
have still managed to produce strong strategies
[4,28]. In fact, empirical evidence from interna-

1See [38] for a discussion of why this is not always the

case.
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tional computer poker competitions [1] suggest
that, in a few cases, top down approaches have
managed to out-perform their bottom up counter-
parts. In this work we describe one such top down
approach that we have used to construct sophis-
ticated strategies within the computer poker do-
main. Our case-based approach can be used to pro-
duce strategies for a range of sub-domains within
the computer poker environment, including both
limit and no-limit betting structures as well as
two-player and multi-player matches. The case-
based strategies produced by our approach have
achieved 1st place finishes for our agent (Sartre) at
the Annual Computer Poker Competition (ACPC)
[1]. The ACPC is the premier computer poker
event and the agents submitted typically represent
the current state-of-the-art in computer poker re-
search.

We have applied and evaluated case-based strate-
gies within the game of Texas Hold’em. Texas
Hold’em is currently the most popular poker varia-
tion. To achieve strong performance, players must
be able to successfully deal with imperfect infor-
mation, i.e. they cannot see their opponents’ hid-
den cards. Also, chance events occur in the do-
main via the random distribution of playing cards.
Texas Hold’em can be played as a two-person game
or a multi-player game. There are multiple varia-
tions on the type of betting structures used that
can dramatically alter the dynamics of the game
and hence the strategies that must be employed for
successful play. For instance, a limit game restricts
the size of the bets allowed to predefined values.
On the other hand, a no-limit game imposes no
such restriction.

In this work we present case-based strategies in
three poker domains. Our analysis begins within
the simplest variation of Texas Hold’em, i.e. two-
player, limit Hold’em. Here we trace the evolution
of our case-based architecture and evaluate the ef-
fect that modifications have on strategy perfor-
mance. The end result of our experimentation in
the two-player, limit Hold’em domain is a coherent
framework for producing strong case-based strate-
gies, based on the observation and generalisation
of expert decisions. The lessons learned within this
domain offer valuable insights, which we use to ap-
ply the framework to the more complicated do-
mains of two-player, no-limit Hold’em and multi-
player, limit Hold’em. We describe the difficulties
that these more complicated domains impose and

how our framework deals with these issues. For
each of the three poker sub-domains mentioned
above we produce strategies that have been ex-
tensively evaluated. In particular, we present re-
sults from Annual Computer Poker Competitions
for the years 2009 – 2011 and illustrate the per-
formance trajectory of our case-based strategies
against the best available opposition.

The remainder of this document proceeds as
follows. Section 2 describes the rules of Texas
Hold’em poker, highlighting the differences be-
tween the different variations available. Section
3 provides the necessary background and details
some related work. Section 4 further recaps the
benefits of the poker domain as a test-bed for arti-
ficial intelligence research and provides the motiva-
tion for the use of case-based strategies as opposed
to alternative algorithms. Section 5 details the ini-
tial evolution of our case-based architecture for
computer poker in the two-player, limit Hold’em
domain. Experimental results are presented and
discussed. Sections 6 and 7 extrapolate the result-
ing framework to the more complicated domains
of two-player, no-limit Hold’em and multi-player
limit Hold’em. Once again, results are presented
and discussed for each separate domain. Finally,
Section 8 concludes the document.

2. Texas Hold’em

Here we briefly describe the game of Texas
Hold’em, highlighting some of the common terms
which are used throughout this work. For more de-
tailed information on Texas Hold’em consult [33],
or for further information on poker in general see
[32].

Texas Hold’em can be played either as a two-
player game or a multi-player game. When a game
consists only of two players it is often referred to
as a heads up match. Game play consists of four
stages – preflop, flop, turn and river. During each
stage a round of betting occurs. The first round
of play is the preflop where all players at the ta-
ble are dealt two hole cards, which only they can
see. Before any betting takes place, two forced bets
are contributed to the pot, i.e. the small blind and
the big blind. The big blind is typically double
that of the small blind. In a heads up match, the
dealer acts first preflop. In a multi-player match
the player to the left of the big blind acts first pre-
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flop. In both heads up and multi-player matches,
the dealer is the last to act on the post-flop betting
rounds (i.e. the flop, turn and river). The legal bet-
ting actions are fold, check/call or bet/raise. These
possible betting actions are common to all vari-
ations of poker and are described in more detail
below:

Fold: When a player contributes no further chips
to the pot and abandons their hand and any
right to contest the chips that have been
added to the pot.

Check/Call: When a player commits the minimum
amount of chips possible in order to stay in
the hand and continues to contest the pot.
A check requires a commitment of zero fur-
ther chips, whereas a call requires an amount
greater than zero.

Bet/Raise: When a player commits greater than
the minimum amount of chips necessary to
stay in the hand. When the player could have
checked, but decides to invest further chips
in the pot, this is known as a bet. When the
player could have called a bet, but decides to
invest further chips in the pot, this is known
as a raise.

In a limit game all bets are in increments of a
certain amount. In a no-limit game a player may
bet any amount up to the total value of chips that
they possess. For example, assuming a player be-
gins a match with 1000 chips, after paying a forced
small blind of one chip they then have the op-
tion to either fold, call one more chip or raise by
contributing anywhere between 3 and 999 extra
chips2. In a standard game of heads-up, no-limit
poker, both players’ chip stacks would fluctuate
between hands, e.g. a win from a previous hand
would ensure that one player had a larger chip
stack to play with on the next hand. In order to
reduce the variance that this structure imposes, a
variation known as Doyle’s Game is played where
the starting stacks of both players are reset to a
specified amount at the beginning of every hand.

Once the round of betting is complete, as long
as at least two players still remain in the hand,
play continues on to the next stage. Each post-
flop stage involves the drawing of community cards

2The minimum raise would involve paying 1 more chip to
match the big blind and then committing at least another

2 chips as the minimum legal raise.

from the shuffled deck of cards as follows: flop – 3
community cards, turn – 1 community card, river
– 1 community card. All players combine their hole
cards with the public community cards to form
their best five card poker hand. A showdown oc-
curs after the river where the remaining players re-
veal their hole cards and the player with the best
hand wins all the chips in the pot. If both players’
hands are of equal value, the pot is split between
them.

3. Background

3.1. Strategy Types

As mentioned in the introduction, many AI
researchers working in the computer poker do-
main have focused their efforts on creating strong
strategies via bottom up, equilibrium finding algo-
rithms. When equilibrium finding algorithms are
applied to the computer poker domain, they pro-
duce ε-Nash equilibria. ε-Nash equilibria are ro-
bust, static strategies that limit their exploitability
(ε) against worst-case opponents. A pair of strate-
gies are said to be an ε-Nash equilibrium if nei-
ther strategy can gain more than ε by deviating.
In this context, a strategy refers to a probabilistic
distribution over available actions at every deci-
sion point. Two state-of-the-art equilibrium find-
ing algorithms are Counterfactual Regret Minimi-
sation (CFRM) [39,18] and Excessive Gap Tech-
nique (EGT) [13]. CFRM is an iterative, regret
minimising algorithm that was developed by the
University of Alberta Computer Poker Research
Group (CPRG)3. The EGT algorithm, developed
by Andrew Gilpin and Thomas Sandholm from
Carnegie Mellon University, is an adapted version
of Nesterov’s excessive gap technique [21], which
has been specialised for two-player, zero-sum, im-
perfect information games.

The ε-Nash equilibrium strategies produced via
CFRM and EGT are solid, unwavering strate-
gies that do not adapt given further observations
made by challenging particular opponents. An al-
ternative strategy type is one that attempts to
exploit perceived weaknesses in their opponents’
strategies, by dynamically adapting their strat-
egy given further observations. This type of strat-

3http://poker.cs.ualberta.ca/
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egy is known as an exploitive (or maximal) strat-
egy. Exploitive strategies typically select their ac-
tions based on information they have observed
about their opponent. Therefore, constructing an
exploitive strategy typically involves the added dif-
ficulty of generating accurate opponent models.

3.2. Strategy Evaluation and the Annual
Computer Poker Competition

Both ε-Nash equilibrium based strategies and
exploitive strategies have received attention in the
computer poker literature [14,15,7,8,17]. Overall a
larger focus has been applied to equilibrium find-
ing approaches. This is especially true regarding
agents entered into the Annual Computer Poker
Competition. Since 2006, the ACPC has been held
every year at conferences such as AAAI and IJCAI.
The agents submitted to the competition typically
represent the strongest computer poker agents in
the world, for that particular year. Since 2009, the
ACPC has evaluated agents in the following vari-
ations of Texas Hold’em:

1. Two-player, Limit Hold’em.
2. Two-player, No-Limit Hold’em.
3. Three-player, Limit Hold’em.

In this work, we restrict our attention to these
three sub-domains. Agents are evaluated by play-
ing many hands against each other in a round-
robin tournament structure. The ACPC employs
two winner determination procedures:

1. Total Bankroll. As its name implies the total
bankroll winner determination simply records
the overall profit or loss of each agent and
uses this to rank competitors. In this divi-
sion, agents that are able to achieve larger
bankrolls are ranked higher than those with
lower profits. This winner determination pro-
cedure does not take into account how an
agent achieves its overall profit or loss, for in-
stance it is possible that the winning agent
could win a large amount against one com-
petitor, but lose to all other competitors.

2. Bankroll Instant Run-Off. On the other hand,
the instant run-off division uses a recursive
winner determination algorithm that repeat-
edly removes the agents that performed the
worst against a current pool of players. This
way agents that achieve large profits by ex-
ploiting weak opponents are not favoured, as
in the total bankroll division.

As poker is a stochastic game that consists of
chance events, the variance can often be large es-
pecially between agents that are close in strength.
This requires many hands to be played in order to
arrive at statistically significant conclusions. Due
to the large variance involved, the ACPC employs
a duplicate match structure, whereby all players
end up playing the same set of hands. For example,
in a two-player match a set of N hands are played.
This is then followed by dealing the same set of
N hands a second time, but having both players
switch seats so that they receive the cards their
opponent received previously. As both players are
exposed to the same set of hands, this reduces the
amount of variance involved in the game by en-
suring one player does not receive a larger pro-
portion of higher quality hands than the other. A
two-player match involves two seat enumerations,
whereas a three-player duplicate match involves
six seat enumerations to ensure each player is ex-
posed to the same scenario as their opponents. For
three players (ABC) the following seat enumera-
tions need to take place:

ABC ACB
CAB CBA
BCA BAC

4. Research Motivation

This work describes the use of case-based strate-
gies in games. Our approach makes use of the Case-
based Reasoning (CBR) methodology [26,19]. The
CBR methodology encodes problems, and their so-
lutions, as cases. CBR attempts to solve new prob-
lems or scenarios by locating similar past prob-
lems and re-using or adapting their solutions for
the current situation. Case-based strategies are top
down strategies, in that they are constructed by
processing and analysing a set of training data.
Common game scenarios, together with their play-
ing decisions are captured as a collection of cases,
referred to as the case-base. Each case attempts to
capture important game state information that is
likely to have an impact on the final playing de-
cision. The training data can be both real-world
data, e.g. from online poker casinos, or artificially
generated data, for instance from hand history
logs generated by the ACPC. Case-based strate-
gies attempt to generalise the game playing deci-
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sions recorded within the data via the use of sim-
ilarity metrics that determine whether two game
playing scenarios are sufficiently similar to each
other, such that their decisions can be re-used.

Case-based strategies can be created by training
on data generated from a range of expert players or
by isolating the decisions of a single expert player.
Where a case-based strategy is produced by train-
ing on and generalising the decisions of a single
expert player, we refer to the agent produced as
an expert imitator. In this way, case-based strate-
gies can be produced that attempt to imitate dif-
ferent styles of play simply by training on separate
datasets generated by observing the decisions of
expert players, each with their own style. The lazy
learning [2] of case-based reasoning is particularly
suited to expert imitation where observations of
expert play can be recorded and stored for use at
decision time.

Case-based approaches have been applied and
evaluated in a variety of gaming environments.
CHEBR [24] was a case-based checkers player that
acquired experience by simply playing games of
checkers in real-time. In the RoboCup soccer do-
main, [11] used case-based reasoning to construct
a team of agents that observes and imitates the
behaviour of other agents. Case-based planning
[16] has been investigated and evaluated in the
domain of real-time strategy games [3,22,23,34].
Case-based tactician (CaT) described in [3] selects
tactics based on a state lattice and the outcome of
performing the chosen tactic. The CaT system was
shown to successfully learn over time. The Darmok
architecture described by [22,23] pieces together
fragments of plans in order to produce an over-
all playing strategy. Performance of the strategies
produced by the Darmok architecture were im-
proved by first classifying the situation it found
itself in and having this affect plan retrieval [20].
Combining CBR with other AI approaches has also
produced successful results. In [31] transfer learn-
ing was investigated in a real time strategy game
environment by merging CBR with reinforcement
learning. Also, [6] combined CBR with reinforce-
ment learning to produce an agent that could re-
spond rapidly to changes in conditions of a domi-
nation game.

The stochastic, imperfect information world of
Texas Hold’em poker is used as a test-bed to
evaluate and analyse our case-based strategies.
Texas Hold’em offers a rich environment that al-

lows the opportunity to apply an abundance of
strategies ranging from basic concepts to sophisti-
cated strategies and counter-strategies. Moreover,
the rules of Texas Hold’em poker are incredibly
simple. Contrast this with CBR related research
into complex environments such as real-time strat-
egy games [3,20,22,23], which offer similar issues
to deal with – uncertainty, chance, deception –
but don’t encapsulate this within a simple set of
rules, boundaries and performance metrics. Suc-
cesses and failures achieved by applying case-based
strategies to the game of poker may provide valu-
able insights for CBR researchers using complex
strategy games as their domain, where immedi-
ate success is harder to evaluate. Furthermore, it
is hoped that results may also generalise to do-
mains outside the range of games altogether to
complex real world domains where hidden infor-
mation, chance and deception are commonplace.

One of the major benefits of using case-based
strategies within the domain of computer poker
is the simplicity of the approach. Top down case-
based strategies don’t require the construction
of massive, complex mathematical models that
some other approaches rely on [13,30,27]. Instead,
an autonomous agent can be created simply via
the observation of expert play and the encoding
of observed actions into cases. Below we outline
some further reasons why case-based strategies
are suited to the domain of computer poker and
hence worthy of investigation. The reasons listed
are loosely based on Sycara’s [35] identification
of characteristics of a domain where case-based
reasoning is most applicable (these were later ad-
justed by [37]).

1. A case is easily defined in the domain.
A case is easily identified as a previous sce-
nario an (expert) player has encountered in
the past and the action (solution) associated
with that scenario such as whether to fold,
call or raise. Each case can also record a final
outcome from the hand, i.e. how many chips
a player won or lost.

2. Expert human poker players compare cur-
rent problems to past cases.
It makes sense that poker experts make their
decisions based on experience. An expert
poker player will normally have played many
games and encountered many different sce-
narios; they can then draw on this experience
to determine what action to take for a current
problem.
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3. Cases are available as training data.
While many cases are available to train a
case-based strategy, the quality of their solu-
tions can vary considerably. The context of
the past problem needs to be taken into ac-
count and applied to similar contexts in the
future. As the system gathers more experi-
ence it can also record its own cases, together
with their observed outcomes.

4. Case comparisons can be done effectively.
Cases are compared by determining the sim-
ilarity of their local features. There are many
features that can be chosen to represent a
case. Many of the salient features in the poker
domain (e.g. hand strength) are easily com-
parable via standard metrics. Other features,
such as betting history, require more involved
similarity metrics, but are still directly com-
parable.

5. Solutions can be generalised.
For case-based strategies to be successful, the
re-use or adaptation of similar cases’ solu-
tions should produce a solution that is (rea-
sonably) similar to the actual, known solu-
tion (if one exists) of the target case in ques-
tion. This underpins one of CBR’s main as-
sumptions: that similar cases have similar so-
lutions. We present empirical evidence that
suggests the above assumption is reasonable
in the computer poker domain.

5. Two-Player, Limit Texas Hold’em

We begin with the application of case-based
strategies within the domain of two-player, limit
Texas Hold’em. Two-player, limit Hold’em offers
a beneficial starting point for the experimenta-
tion and evaluation of case-based strategies, within
computer poker. Play is limited to two players and
a restricted betting structure is imposed, whereby
all bets and raises are limited to pre-specified
amounts. The above restrictions limit the size of
the state space, compared to Hold’em variations
that allow no-limit betting and multiple oppo-
nents. However, while the size of the domain is re-
duced, compared to more complex poker domains,
the two-player limit Hold’em domain is still very
large. The game tree consists of approximately
1018 game states and, given the standards of cur-
rent hardware, it is intractable to derive a true

Nash equilibrium for the game. In fact, it proves
impossible to reasonably store this strategy by to-
day’s hardware standards [18]. For these reasons
alternative approaches, such as case-based strate-
gies, can prove useful given their ability for gener-
alisation.

Over the years we have conducted an exten-
sive amount of experimentation on the use of case-
based strategies, using two-player, limit Hold’em
as our test-bed. In particular we have investigated
and measured the effect that changes have on areas
such as feature and solution representation, simi-
larity metrics, system training and the use of dif-
ferent decision making policies. Modifications have
ranged from the very minor, e.g. training on dif-
ferent sets of data to the more dramatic, e.g. the
development of custom betting sequence similar-
ity metrics. For each modification and addition to
the architecture we have extensively evaluated the
strategies produced via self-play experiments, as
well as by challenging a range of third-party, arti-
ficial agents and human opposition. Due to space
limitations we restrict our attention to the changes
that had the greatest affect on the system architec-
ture and its performance. We have named our sys-
tem Sartre (Similarity Assessment Reasoning for
Texas hold’em via Recall of Experience) and we
trace the evolution of its architecture below.

5.1. Overview

In order to generalise betting decisions from a
set of (artificial or real-world) training data, first
it is required to construct and store a collection
of cases. A case’s feature and solution representa-
tion must be decided upon, such as the identifica-
tion of salient attribute-value pairs that describe
the environment at the time a case was recorded.
Each case should attempt to capture important in-
formation about the current environment that is
likely to have an impact on the final solution. Af-
ter a collection of cases has been established, deci-
sions can be made by searching the case-base and
locating similar scenarios for which solutions have
been recorded in the past. This requires the use of
local similarity metrics for each feature.

Given a target case, t, that describes the im-
mediate game environment, a source case, s ∈
S, where S is the entire collection of previously
recorded cases and a set of features, F , global sim-
ilarity is computed by summing each feature’s lo-
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Fig. 1. Overview of the architecture used to produce case-based strategies. The numbers identify the six key areas within the

architecture where the affects of maintenance has been evaluated.

cal similarity contribution, simf , and dividing by
the total number of features:

G(t, s) =
∑
f∈F

simf (tf , sf )

|F |
(1)

Fig. 1. provides a pictorial representation of the
architecture we have used to produce case-based
strategies. The six areas that have been labelled in
Fig. 1. identify six key areas within the architec-
ture where maintenance has had the most impact
and led to positive affects on system performance.
They are:

1. Feature Representation
2. Similarity Metrics
3. Solution Representation
4. Case Retrieval
5. Solution Re-Use Policies, and
6. System Training

5.2. Architecture Evolution

Here we describe some of the changes that have
taken place within the six key areas of our case-
based architecture, identified above. Where possi-
ble, we provide a comparative evaluation for the
maintenance performed, in order to measure the
impact that changes had on the performance of the
case-based strategies produced.

5.2.1. Feature Representation
The first area of the system architecture that we

discuss is the feature representation used within
a case (see Fig. 1, Point 1). We highlight results
that have influenced changes to the representation
over time. In order to construct a case-based strat-
egy a case representation is required that estab-
lishes the type of information that will be recorded

Table 1

Preflop and postflop case feature representation.

Preflop Postflop

1. Hole Cards Hand Strength

2. Betting Sequence Betting Sequence

3. Board Texture

for each game scenario. Our case-based strategies
use a simple attribute-value representation to de-
scribe a set of case features. Table 1 lists the fea-
tures used within our case representation. A sep-
arate representation is used for preflop and post-
flop cases, given the differences between these two
stages of the game. The features listed in Table 1
were chosen by the authors as they concisely cap-
ture all the necessary public game information, as
well as the player’s personal, hidden information.

Each feature is explained in more detail below:

Preflop

1. Hole Cards: the personal hidden cards of the
player, represented by 1 out of 169 equivalence
classes.

2. Betting Sequence: a sequence of characters that
represent the betting actions witnessed until
the current decision point, where actions can
be selected from the set, Alimit = {f, c, r}.

Postflop

1. Hand Strength: a description of the player’s
hand strength given a combination of their
personal cards and the public community
cards.

2. Betting Sequence: identical to the preflop se-
quence, however with the addition of round
delimiters to distinguish betting from previ-
ous rounds, Alimit ∪ {−}.



8 Jonathan Rubin and Ian Watson / Case-Based Strategies in Computer Poker

3. Board Texture: a description of the public com-
munity cards that are revealed during the
postflop rounds

While the case features themselves have re-
mained relatively unchanged throughout the archi-
tecture’s evolution, the actual values that each fea-
ture records has been experimented with to deter-
mine the affect on final performance. For example,
we have compared and evaluated the use of differ-
ent metrics for the hand strength feature from Ta-
ble 1. Fig. 2. depicts the result of a comparison be-
tween three hand strength feature values. In this
experiment, the feature values for betting sequence
and board texture were held constant, while the
hand strength value was varied. The values used to
represent hand strength were as follows:

CATEGORIES: Uses expert defined categories to
classify hand strength. Hands are assigned
into categories by mapping a player’s per-
sonal cards and the available board cards
into one of a number of predefined categories.
Each category represents the type of hand the
player currently has, together with informa-
tion about the drawing potential of the hand,
i.e. whether the hand has the ability to im-
prove with future community cards. In total
284 categories were defined4.

E[HS]: Expected hand strength is a one-dimensional,
numerical metric. The E[HS] metric com-
putes the probability of winning at showdown
against a random hand. This is given by enu-
merating all possible combinations of commu-
nity cards and determining the proportion of
the time the player’s hand wins against the
set of all possible opponent holdings. Given
the large variety of values that can be pro-
duced by the E[HS] metric, bucketing takes
place where similar values are mapped into
a discrete set of buckets that contain hands
of similar strength. Here we use a total of 20
buckets for each postflop round.

E[HS2]: The final metric evaluated involves squar-
ing the expected hand strength. Johanson [18]
points out that squaring the expected hand
strength (E[HS2]) typically gives better re-
sults, as this assigns higher hand strength val-

4A listing of all 284 categories can be found at
the following website: http://www.cs.auckland.ac.nz/

research/gameai/sartreinfo.html

ues to hands with greater potential. Typically
in poker, hands with similar strength values,
but differences in potential, are required to
be played in strategically different ways [33].
Once again bucketing is used where the de-
rived E[HS2] values are mapped into 1 of 20
unique buckets for each postflop round.

The resulting case-based strategies were eval-
uated by challenging the computerised opponent
Fell Omen 2 [10]. Fell Omen 2 is a solid two-player
limit Hold’em agent that plays an ε-Nash equilib-
rium type strategy. Fell Omen 2 was made pub-
licly available by its creator Ian Fellows and has
become widely used as an agent for strategy evalu-
ation [12]. The results depicted in Fig. 2. are mea-
sured in small bets per hand (sb/h), i.e. where the
total number of small bets won or lost are divided
by the total number of hands played. Each data
point records the outcome of three matches, where
3000 duplicate hands were played. The 95% confi-
dence intervals for each data point are also shown.

Results were recorded for various levels of case-
base usage to get an idea of how well the system is
able to generalise decisions. The results in Fig. 2.
show that (when using a full case-base) the use of
E[HS2] for the hand strength feature produces the
strongest strategies, followed by the use of CATE-
GORIES and finally E[HS]. The poor performance
of E[HS] is likely due to the fact that this metric
does not fully capture the importance of a hand’s
future potential. When only a partial proportion of
the case-base is used it becomes more important
for the system to be able to recognise similar at-
tribute values in order to make appropriate deci-
sions. Both E[HS] and E[HS2] are able to gener-
alise well. However, the results show that decision
generalisation begins to break down when using
CATEGORIES. This has to do with the similar-
ity metrics used. In particular, the CATEGORIES
strategy in Fig. 2 is actually a baseline strategy
that used overly simplified similarity metrics for
each of its feature values. Next we discuss the area
of similarity assessment within the system archi-
tecture, which is intimately tied to the particular
values chosen within the feature representation.

5.2.2. Similarity Assessment
For each feature that is used to represent

a case, a corresponding local similarity metric,
simf (f1, f2), is required that determines how simi-
lar two feature values, f1 and f2, are to each other.



Jonathan Rubin and Ian Watson / Case-Based Strategies in Computer Poker 9

Fig. 2. The performance of three separate case-based strategies produced by altering the value used to represent hand strength.

Results are measured in sb/h and were obtained by challenging Fell Omen 2.

The use of different representations for the hand
strength feature in Fig. 2. also requires the use
of separate similarity metrics. The CATEGORIES
strategy in Fig. 2. employs a trivial all-or-nothing
similarity metric for each of its features. If the
value of one feature has the same value of an-
other feature, a similarity score of 1 is assigned.
On the other hand, if the two feature values dif-
fer at all, a similarity value of 0 is assigned. This
was done to get an initial idea of how the sys-
tem performed using the most basic of similarity
retrieval measures. The performance of this base-
line system could then be used to determine how
improvements to local similarity metrics affected
overall performance.

The degradation of performance observed in Fig.
2. for the CATEGORIES strategy (as the propor-
tion of case-base usage decreases) is due to the use
of all-or-nothing similarity assessment. The use of
the overly simplified all-or-nothing similarity met-
ric meant that the system’s ability to retrieve sim-
ilar cases could often fail, leaving the system with-
out a solution for the current game state. When
this occurred a default-policy was relied upon to
provide the system with an action. The default-
policy used by the system was an always-call pol-
icy, whereby the system would first attempt to

check if possible, otherwise it would call an oppo-
nent’s bet. This default-policy was selected by the
authors as it was believed to be preferable to other
trivial default policies, such as always-fold, which
would always result in a loss for the system.

The other two strategies in Fig. 2. (E[HS] and
E[HS2]) do not use trivial all-or-nothing similar-
ity. Instead the hand strength features use a sim-
ilarity metric based on Euclidean distance. Both
the E[HS] and E[HS2] strategies also employ in-
formed similarity metrics for their betting sequence
and board texture features, as well. Recall that
the betting sequence feature is represented as a se-
quence of characters that lists the playing deci-
sions that have been witnessed so far for the cur-
rent hand. This requires the use of a non-trivial
metric to determine similarity between two non-
identical sequences. Here we developed a custom
similarity metric that involves the identification of
stepped levels of similarity, based on the number
of bets/raises made by each player. The exact de-
tails of this metric are presented in Section 5.3.2.
Finally, for completeness, we determine similarity
between different board texture classes via the use
of hand picked similarity values.

Fig. 2. shows that, compared to the CATE-
GORIES strategy, the E[HS] and E[HS2] strategies
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do a much better job of decision generalisation as
the usable portion of the case-base is reduced. The
eventual strategies produced do not suffer the dra-
matic performance degradation that occurs with
the use of all-or-nothing similarity.

5.2.3. Solution Representation
As well as recording feature values, each case

also needs to specify a solution. The most obvious
solution representation is a single betting action,
a ∈ Alimit. As well as a betting action, the solution
can also record the actual outcome, i.e. the numeri-
cal result, o ∈ <, of having taken action a ∈ Alimit,
for a particular hand. Using this representation al-
lows a set of training data to be parsed where each
action/outcome observed maps directly to a case,
which is then stored in the case-base. Case reten-
tion during game play can also be handled in the
same way, where the case-base is updated with new
cases at runtime. To make a playing decision at
runtime the case-base is searched for similar cases
and their solutions are combined to give a proba-
bilistic vector (f, c, r) that specifies the proportion
of the time our strategy should take each particu-
lar action.

A major drawback of the single action/outcome
solution representation is that the case-base be-
comes filled with redundant cases, i.e. cases that
record the same feature values, which also may or
may not record the same betting action. An alter-
native solution representation, would involve di-
rectly storing the action and outcome vectors, i.e.
effectively merging the redundant cases into one
case by shifting combined information into the case
solution. In order to achieve this solution represen-
tation, it now becomes necessary to pre-process the
training data. As there is no longer a one-to-one
mapping between hands and cases, the case-base
must first be searched for an existing case during
case-base construction. If one exists, its solution
is updated, if one doesn’t exist, it is added to the
case-base. Case retention at runtime can also still
take place, however, this requires that case solu-
tion vectors not be normalised after case-base con-
struction as this would result in a loss of proba-
bilistic information. Instead, it is sufficient to store
the raw action/outcome frequency count informa-
tion as this can later be normalised at runtime to
make a probabilistic decision.

A solution representation based on action and
outcome vectors results in a much more compact
case-base. Table 2 depicts how much we were able

Table 2

Total cases stored for each playing round using single value
solution representation compared to vector valued solutions

Round Total Cases - Single Total Cases - Vector

Preflop 201,335 857

Flop 300,577 6,743

Turn 281,529 35,464

River 216,597 52,088

Total 1,000,038 95,152

to decrease the number of cases required to be
stored simply by modifying the solution represen-
tation. Table 2 indicates that a single valued so-
lution representation requires over 10 times the
number of cases to be stored compared to a vector
valued representation. Moreover, no information
is lost when switching from a single valued repre-
sentation to a vector valued representation. This
modification has a follow on effect that improves
the quality of the case-based strategies produced.
As the number of cases required to be stored is so
large – given the single action/outcome represen-
tation, training of the system had to be cut short
due to the costs involved in actually storing the
cases. The compact case-base produced by repre-
senting solutions directly as vectors, bypasses this
problem and allows the system to be trained on a
larger set of data. By not prematurely restricting
the training phase, the case-based strategies pro-
duced are able to increase the amount of scenarios
they are able to encounter and encode cases for
during training. This leads to a more comprehen-
sive and competent case-base.

5.2.4. Case Retrieval
Our architecture for producing case-based strate-

gies has consistently used the k-nearest neighbour
algorithm (k-NN) for case retrieval. Given a tar-
get case, t, and a collection of cases, S, the k-NN
algorithm retrieves the k most similar cases by po-
sitioning t in the n-dimensional search space of S.
Each dimension in the space records a value for one
of the case features. Equation 1 (from Section 5.1)
is used to determine the global similarity between
two cases, t and s ∈ S.

While the use of the k-NN algorithm for case
retrieval has not changed within our architecture,
maintenance to other components of the architec-
ture has resulted in modifications regarding the
exact details used by the k-NN algorithm. One
such modification was required given the transi-
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tion from a single action solution representation
to a vector valued solution representation (as de-
scribed in Section 5.2.3). Initially, a variable value
of k was allowed, whereby the total number of
similar cases retrieved varied with each search of
the case-base. Recall, that a case representation
that encodes solutions as single actions results in
a redundant case-base that contains multiple cases
with the exact same feature values. The solution
of those cases may or may not advocate different
playing decisions. Given this representation, a final
probability vector was required to be created on-
the-fly at runtime by retrieving all identical cases
and merging their solutions. Hence, the number of
retrieved cases, k, could vary between 0 and N .
When k > 0, the normalised entries of the proba-
bility vector were used to make a final playing de-
cision. However, if k = 0, the always-call default-
policy was used.

Once the solution representation was updated to
record action vectors (instead of single decisions)
a variable k value was no longer required. Instead,
the algorithm was updated to simply always re-
trieve the nearest neighbour, i.e. k = 1. Given fur-
ther improvements to the similarity metrics used,
the use of a default-policy was no longer required
as it was no longer possible to encounter scenarios
where no similar cases could be retrieved. Instead,
the most similar neighbour was always returned,
no matter what the similarity value. This has re-
sulted in a much more robust system that is actu-
ally capable of generalising decisions recorded in
the training data, as opposed to the initial proto-
type system which offered no ability for graceful
degradation, given dissimilar case retrieval.

5.2.5. Solution Re-use Policies
The fifth area of the architecture that we dis-

cuss (Fig. 1, Point 5) concerns the choice of
a final playing decision via the use of separate
policies, given a retrieved case and its solution.
Consider the probabilistic action vector, A =
(a1, a2, . . . , an), and a corresponding outcome vec-
tor, O = (o1, o2, . . . , on). There are various ways
to use the information contained in the vectors to
make a final playing decision. We have identified
and empirically evaluated several different policies
for re-using decision information, which we label
solution re-use policies. Below we outline three so-
lution re-use policies, which have been used for
making final decisions by our case-based strategies.

1. Probabilistic The first solution re-use policy
simply selects a betting action probabilisti-
cally, given the proportions specified within
the action vector, P (ai) = ai, for i = 1 . . . n.
Betting decisions that have greater propor-
tions within the vector will be made more of-
ten then those with lower proportions. In a
game-theoretic sense, this policy corresponds
to a mixed strategy.

2. Max-frequency Given an action vector A =
(a1, a2, . . . , an), the max-frequency solution
re-use policy selects the action that corre-
sponds to arg maxi ai, i.e. it selects the ac-
tion that was made most often and ignores all
other actions. In a game-theoretic sense, this
policy corresponds to a pure strategy.

3. Best-Outcome Instead of using the values con-
tained within the action vector, the best-
outcome solution re-use policy selects an ac-
tion, given the values contained within the
outcome vector, O = (o1, o2, . . . , on). The fi-
nal playing decision is given by the action, ai,
that corresponds to arg maxi oi, i.e. the action
that corresponds to the maximum entry in the
outcome vector.

Given the three solution re-use policies de-
scribed above, it is desirable to know which policies
produce the strongest strategies. Table 3 presents
the results of self-play experiments where the three
solution re-use policies were challenged against
each other. A round robin tournament structure
was used, where each policy challenged every other
policy. The figures presented are from the row
player’s perspective and are in small bets per
hand. Each match consists of 3 separate dupli-
cate matches of 3000 hands. Hence, in total 18,000
hands of poker were played between each competi-
tor. All results are statistically significant with a
95% level of confidence.

Table 3 shows that the max-frequency pol-
icy outperforms its probabilistic and best-outcome
counterparts. Of the three, best-outcome fares the
worst, losing all of its matches. The results indicate
that simply re-using the most commonly made de-
cision results in better performance than mixing
from a probability vector and that choosing the
decision that resulted in the best outcome was the
worst solution re-use policy. Moreover, these re-
sults are representative of further experiments in-
volving other third-party computerised agents.
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Table 3

Results of experiments between solution re-use policies. The
values shown are in sb/h with 95% confidence intervals.

Max-frequency Probabilistic Best-outcome Average

Max-frequency 0.011± 0.005 0.076± 0.008 0.044± 0.006

Probabilistic −0.011± 0.005 0.036± 0.009 0.012± 0.004

Best-outcome −0.076± 0.008 −0.036± 0.009 −0.056± 0.005

One of the reasons for the poor performance of
best-outcome is likely due to the fact that good
outcomes don’t necessarily represent good betting
decisions and vice-versa. The reason for the suc-
cess of the max-frequency policy is less obvious. In
our opinion, this has to do with the type of oppo-
nent being challenged, i.e. agents that play a static,
non-exploitive strategy, such as those listed in Ta-
ble 3, as well as strategies that attempt to approxi-
mate a Nash equilibrium. As an equilibrium-based
strategy does not attempt to exploit any bias in
its opponent’s strategy, it will only gain when the
opponent ends up making a mistake by selecting
an inappropriate action. The action that was made
most often is unlikely to be an inappropriate ac-
tion, therefore sticking to this decision avoids any
exploration errors made by choosing other (possi-
bly inappropriate) actions. Moreover, biasing play-
ing decisions towards this action is likely to go un-
punished when challenging a non-exploitive agent.
On the other hand, against an exploitive opponent
the bias imposed by choosing only one action is
likely to be detrimental to performance in the long
run and therefore it would become more important
to mix up decisions.

5.2.6. System Training
How the system is trained is the final key area of

the architecture that we discuss, in regard to sys-
tem maintenance. One of the major benefits of pro-
ducing case-based strategies via expert imitation,
is that different types of strategies can be produced
by simply modifying the data that is used to train
the system. Decisions that were made by an expert
player can be extracted from hand history logs and
used to train a case-based strategy. Experts can be
either human or other artificial agents.

In order to train a case-based strategy, per-
fect information is required, i.e. the data needs to
record the hidden card information of the expert
player. Typically, data collected from online poker
sites only contains this information when the orig-
inal expert played a hand that resulted in a show-

down. For hands that were folded before a show-
down, this information is lost. It is difficult to train
a strategy on data where this information is miss-
ing. More importantly, any attempt to train a sys-
tem on only the data where showdowns occurred
would result in biased actions, as the decision to
fold would never be encountered.

It is for these reasons that our case-based strate-
gies have been trained on data made publicly avail-
able from the Annual Computer Poker Competi-
tion [1]. This data records hand history logs for
all matches played between computerised agents
at a particular year’s competition. The data con-
tains perfect information for every hand played
and therefore can easily be used to train an
imitation-based system. Furthermore, the comput-
erised agents that participate at the ACPC each
year are expected to improve in playing strength
over the years and hence re-training the system
on updated data should have a follow on affect on
performance for any imitation strategies produced
from the data. Our case-based strategies have typ-
ically selected subsets of data to train on, based
on the decisions made by the agents that have per-
formed the best in either of the two winner deter-
mination methods used by the ACPC.

There are both advantages and disadvantages
for producing strategies that rely on generalising
decisions from training data. While this provides a
convenient mechanism for easily upgrading a sys-
tem’s play, there is an inherent reliance on the
quality of the underlying data in order to produce
reasonable strategies. Furthermore, it is reasonable
to assume that strategies produced in this way are
typically only expected to do as well as the original
expert(s) they are trained on.

5.3. A Framework for Producing Case-Based
Strategies in Two-Player, Limit Texas
Hold’em

For the six key areas of our architecture (de-
scribed above) maintenance was guided via com-
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Table 4

A case is made up of three attribute-value pairs, which describe the current state of the game. A solution consists of an action
and outcome triple, which records the average numerical value of applying the action (-∞ refers to an unknown outcome).

Attribute Type Example

1. Hand Strength Integer 1 – 50

2. Betting Sequence String rc-c, crrc-crrc-cc-, r, ...

No-Salient, Flush-Possible,

3. Board Texture Class Straight-Possible, Flush-Highly-Possible,

...

Action Triple (0.0, 0.5, 0.5), (1.0, 0.0, 0.0), ...

Outcome Triple (-∞, 4.3, 15.6), (-2.0, -∞, -∞), ...

parative evaluation and overall impact on perfor-
mance. The outcome of this intensive, systematic
maintenance is the establishment of a final frame-
work for producing case-based strategies in the do-
main of two-player, limit Hold’em.

Here we present the details of the final frame-
work we have established for producing case-based
strategies. The following sections illustrate the de-
tails of our framework by specifying the following
sufficient components:

1. A representation for encoding cases and game
state information

2. The corresponding similarity metrics required
for decision generalisation.

5.3.1. Case Representation
Table 4 depicts the final post-flop case repre-

sentation used to capture game state information.
A single case is represented by a collection of
attribute-value pairs. Separate case-bases are con-
structed for the separate rounds of play by pro-
cessing a collection of hand histories and recording
values for each of the three attributes listed in Ta-
ble 4. The attributes have been selected by the au-
thors as they capture all the necessary information
required to make a betting decision. Each of the
post-flop attribute-value pairs are now described
in more detail:

1. Hand Strength: The quality of a player’s hand
is represented in our framework by calculat-
ing the E[HS2] of the player’s cards and then
mapping these values into 1 out of 50 evenly
divided buckets, i.e. uniform bucketing.

2. Betting Sequence: The betting sequence is rep-
resented as a string. It records all observed

actions that have taken place in the current
round, as well as previous rounds. Characters
in the string are selected from the set of al-
lowable actions, Alimit = {f, c, r}, rounds are
delimited by a hyphen.

3. Board Texture: The board texture refers to im-
portant information available, given the com-
bination of the publicly available community
cards. In total, nine board texture categories
were selected by the authors. These categories
are displayed in Table 5 and are believed
to represent salient information that any hu-
man player would notice. Specifically, the cat-
egories focus on whether it is possible that an
opponent has made a flush (five cards of the
same suit) or a straight (five cards of sequen-
tial rank), or a combination of both. The cate-
gories are broken up into possible and highly-
possible distinctions. A category labelled pos-
sible refers to the situation where the oppo-
nent requires two of their personal cards in
order to make their flush or straight. On the
other hand, a highly-possible category only
requires the opponent to use one of their per-
sonal cards to make their hand, making it
more likely they have a straight or flush.

5.3.2. Similarity Metrics
Each feature requires a corresponding local sim-

ilarity metric in order to generalise decisions con-
tained in a set of data. Here we present the metrics
specified by our framework.

1. Hand Strength: Equation 2 specifies the met-
ric used to determine similarity between two
hand strength buckets (f1, f2).
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sim(f1, f2) = max{1− k · |f1 − f2|
T

, 0} (2)

Here, T refers to the total number of buckets
that have been defined, where f1, f2 ∈ [1, T ]
and k is a scalar parameter used to adjust the
rate at which similarity should decrease.

2. Betting Sequence: To determine similarity be-
tween two betting sequences we developed
a custom similarity metric that involves the
identification of stepped levels of similarity,
based on the number of bets/raises made
by each player. The first level of similarity
(level0) refers to the situation when one bet-
ting sequence exactly matches that of another.
If the sequences do not exactly match the next
level of similarity (level1) is evaluated. If two
distinct betting sequences exactly match for
the active betting round and for all previous
betting rounds the total number of bets/raises
made by each player are equal then level1 sim-
ilarity is satisfied and a value of 0.9 is as-
signed. Consider the following example where
the active betting round is the turn and the
two betting sequences are:

1. crrc-crrrrc-cr
2. rrc-rrrrc-cr

Here, level0 is clearly incorrect as the se-
quences do not match exactly. However, for
the active betting round (cr) the sequences
do match. Furthermore, during the preflop (1.
crrc and 2. rrc) both players made 1 raise
each, albeit in a different order. During the
flop (1. crrrrc and 2. rrrrc) both players now
make 4 raises each. Given that the number
of bets/raises in the previous rounds (preflop
and flop) match, these two betting sequences
would be assigned a similarity value of 0.9.
If level1 similarity was not satisfied the next
level (level2) would be evaluated. Level2 simi-
larity is less strict than level1 similarity as the
previous betting rounds are no longer differen-
tiated. Consider the river betting sequences:

1. rrc-cc-cc-rrr
2. cc-rc-crc-rrr

Once again the sequences for the active round
(rrr) matches exactly. This time, the num-
ber of bets/raises in the preflop round are not



A B C D E F G H I

A 1 0 0 0 0 0 0 0 0
B 0 1 0.8 0.7 0 0 0 0 0
C 0 0.8 1 0.7 0 0 0 0 0
D 0 0.7 0.7 1 0 0 0 0 0
E 0 0 0 0 1 0.8 0.7 0 0.6
F 0 0 0 0 0.8 1 0.7 0 0.5
G 0 0 0 0 0.7 0.7 1 0.8 0.8
H 0 0 0 0 0 0 0.8 1 0.8
I 0 0 0 0 0.6 0.5 0.8 0.8 1


Fig. 3. Board texture similarity matrix.

Table 5

Board Texture Key

A No salient

B Flush possible

C Straight possible

D Flush possible, straight possible

E Straight highly possible

F Flush possible, straight highly possible

G Flush highly possible

H Flush highly possible, straight possible

I Flush highly possible, straight highly possible

equal (the same applies for the flop and the

turn). Therefore, level1 similarity is not sat-

isfied. However, the number of raises encoun-

tered for all the previous betting rounds com-

bined (1. rrc-cc-cc and 2. cc-rc-crc) are the

same for each player, namely 1 raise by each

player. Hence, level2 similarity is satisfied and

a similarity value of 0.8 would be assigned. Fi-

nally, if level0, level1 and level2 are not satis-

fied level3 is reached where a similarity value

of 0 is assigned.

3. Board Texture: To determine similarity between

board texture categories a similarity matrix

was derived. Matrix rows and columns in Fig.

3. represent the different categories defined in

Table 5. Diagonal entries refer to two sets of

community cards that map to the same cate-

gory, in which case similarity is always 1. Non-

diagonal entries refer to similarity values be-

tween two dissimilar categories. These values

were hand picked by the authors. The matrix

given in Fig. 3. is symmetric.
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5.4. Experimental Results

We now present a series of experimental results
collected in the domain of two-player, limit Texas
Hold’em. The results presented are obtained from
annual computer poker competitions and data col-
lected by challenging human opposition. For each
evaluated case-based strategy, we provide an ar-
chitecture snapshot that captures the relevant de-
tails of the parameters used for each of the six key
architecture areas, that were previously discussed.

5.4.1. 2009 IJCAI Computer Poker Competition
We begin with the results of the 2009 ACPC,

held at the International Joint Conference on Ar-
tificial Intelligence. Here, we submitted our case-
based agent, Sartre, for the first time, to challenge
other computerised agents submitted from all over
the world. The following architecture snapshot de-
picts the details of the submitted agent:

1. Feature Representation

(a) Hand Strength – categories
(b) Betting Sequence – string
(c) Board Texture – categories

2. Similarity Assessment – all-or-nothing
3. Solution Representation – single
4. Case Retrieval – variable k
5. Re-Use Policy – max-frequency
6. System Training – Hyperborean-08

The architecture snapshot above represents a
baseline strategy where maintenance had yet to be
performed. Each of the entries listed above corre-
sponds to one of the six key architecture areas in-
troduced in Section 5.2. Notice that trivial all-or-
nothing similarity was employed along with a sin-
gle action solution representation, which resulted
in a redundant case-base. The value for system
training refers to the original expert whose deci-
sions were used to train the system.

The final results are displayed in Table 6. The
competition consisted of two winner determina-
tion methods: bankroll instant run-off and total
bankroll. Each agent played between 75 and 120
duplicate matches against every other agent in or-
der to obtain the average values displayed. Each
match consisted of 3000 duplicate hands. The val-
ues presented are the number of small bets per
hand won or lost. Our case-based agent, Sartre,
achieved a 7th place finish in the instant run-off
division and a 6th place finish in the total bankroll
division.

5.4.2. 2010 AAAI Computer Poker Competition
Following the maintenance experiments pre-

sented in Section 5.2, an updated case-based strat-
egy was submitted to the 2010 ACPC, held at
the Twenty-Forth AAAI Conference on Artificial
Intelligence. Our entry, once again named Sartre,
used the following architecture snapshot :

1. Feature Representation

(a) Hand Strength – 50 buckets E[HS2]
(b) Betting Sequence – string
(c) Board Texture – categories

2. Similarity Assessment

(a) Hand Strength – Euclidean
(b) Betting Sequence – custom
(c) Board Texture – matrix

3. Solution Representation – vector
4. Case Retrieval – k = 1
5. Re-Use Policy – probabilistic
6. System Training MANZANA

Here a vector valued solution representation was
used together with improved similarity assessment.
Given the updated solution representation, a sin-
gle nearest neighbour, k = 1, was retrieved via
the k-NN algorithm. A probabilistic solution re-use
policy was employed and the system was trained
on the decisions of the winner of the 2009 total
bankroll division. The final results are presented
in Table 7. Once again two winner determination
divisions are presented and the values are depicted
in small bets per hand with 95% confidence inter-
vals. Given the improvements, Sartre was able to
achieve a 6th place finish in the runoff division and
a 3rd place finish in the total bankroll division.

5.4.3. 2011 AAAI Computer Poker Competition
The 2011 ACPC was held at the Twenty-Fifth

AAAI Conference on Artificial Intelligence. Our
entry to the competition is represented by the fol-
lowing architecture snapshot :

1. Feature Representation

(a) Hand Strength – 50 buckets E[HS2]
(b) Betting Sequence – string
(c) Board Texture – categories

2. Similarity Assessment

(a) Hand Strength – Euclidean
(b) Betting Sequence – custom
(c) Board Texture – matrix
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Table 6

2009 limit heads up bankroll and runoff results. Values are
in sb/h with 95% confidence intervals.

Limit Heads up Bankroll Runoff Limit Heads up Total Bankroll Average Won/Lost

1. GGValuta 1. MANZANA 0.186± 0.002

2. Hyperborean-Eqm 2. Hyperborean-BR 0.116± 0.002

3. MANZANA 3. GGValuta 0.110± 0.002

4. Rockhopper 4. Hyperborean-Eqm 0.116± 0.002

5. Hyperborean-BR 5. Rockhopper 0.103± 0.002

6. Slumbot 6. Sartre 0.097± 0.002

7. Sartre 7. Slumbot 0.096± 0.002

8. GS5 8. GS5 0.082± 0.002

9. AoBot 9. AoBot −0.002± 0.003

10. GS5Dynamic 10. dcurbHU −0.07± 0.002

11. LIDIA 11. LIDIA −0.094± 0.002

12. dcurbHU 12. GS5Dynamic −0.201± 0.002

13. Tommybot

Table 7

2010 limit heads up bankroll and runoff results. Values are in sb/h with 95% confidence intervals.

Limit Heads up Bankroll Runoff Limit Heads up Total Bankroll Average Won/Lost

1. Rockhopper 1. PULPO 0.225± 0.003

2. GGValuta 2. Hyperborean-TBR 0.207± 0.002

3. Hyperborean-IRO 3. Sartre 0.203± 0.002

4. Slumbot 4. Rockhopper 0.200± 0.002

5. PULPO 5. Slumbot 0.199± 0.002

6. Sartre 6. GGValuta 0.193± 0.003

7. GS6-IRO 7. Jester 0.164± 0.003

8. Arnold2 8. Arnold2 0.160± 0.003

9. Jester 9. GS6-TBR 0.139± 0.004

10. LittleRock 10. LittleRock 0.118± 0.003

11. PLICAS 11. PLICAS −0.046± 0.005

12. ASVP 12. ASVP −0.320± 0.006

13. longhorn 13. longhorn −1.441± 0.005

3. Solution Representation – vector
4. Case Retrieval – k = 1
5. Re-Use Policy – max-frequency
6. System Training combination

While reasonably similar to the strategy em-
ployed for the 2010 competition, the architecture
snapshot above exhibits some important differ-
ences. In particular, the 2011 agent consisted of a
combination of multiple strategies that were each
trained by observing and generalising the decisions
of separate original experts, see [29] for further de-
tails. Also notice the switch from a probabilistic
solution re-use policy to a max-frequency policy.

Table 8 presents results from the 2011 competi-
tion. For the third year in a row, Sartre was able

to improve its performance in both winner deter-
mination divisions. Sartre improved from 6th to
4th place in the instant runoff division. Whereas,
in the total bankroll division Sartre improved from
3rd place to 2nd place. Notice however, while Cala-
mari was declared the winner of this competition
(with Sartre placing 2nd), there is overlap in the
values used to make this decision, given the stan-
dard deviations.

5.4.4. Human Opponents – Limit
Finally, we provide results for our case-based

strategies when challenging human opposition.
These results were collected from an online web
application5 where any human opponent was able

5http://www.cs.auckland.ac.nz/poker/
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Table 8

2011 limit heads up bankroll and runoff results. Values are in sb/h with 95% confidence intervals.

Limit Heads up Bankroll Runoff Limit Heads up Total Bankroll Average Won/Lost

1. Hyperborean-2011-2p-limit-iro 1. Calamari 0.286± 0.004

2. Slumbot 2. Sartre 0.281± 0.006

3. Calamari 3. Hyperborean-2011-2p-limit-tbr 0.225± 0.005

4. Sartre 4. Feste 0.220± 0.005

5. LittleRock 5. Slumbot 0.216± 0.006

6. ZBot 6. ZBot 0.209± 0.006

7. GGValuta 7. Patience 0.209± 0.006

8. Feste 8. 2Bot 0.192± 0.006

9. Patience 9. LittleRock 0.180± 0.005

10. 2Bot 10. GGValuta 0.145± 0.006

11. RobotBot 11. AAIMontybot 0.001± 0.012

12. AAIMontybot 12. RobotBot −0.035± 0.010

13. Entropy 13. GBR −0.051± 0.012

14. GBR 14. Entropy −0.097± 0.013

15. player.zeta 15. player.zeta −0.176± 0.017

16. Calvin 16. Calvin −0.230± 0.012

17. Tiltnet.Adaptive 17. Tiltnet −0.268± 0.010

18. POMPEIA 18. POMPEIA −0.549± 0.006

19. TellBot 19. TellBot −0.759± 0.016

Fig. 4. The number of small bets won in total against all human opponents to challenge Sartre.

to log on via their browser and challenge the lat-

est version of the Sartre system. While it is inter-

esting to gauge how well Sartre performs against

human opponents (not just computerised agents),

care must also be taken in interpreting these re-

sults as there has been no effort made to restrict

the human opposition to only player’s of a certain

quality.

Fig. 4. depicts the number of small bets won in

total against every human opponent to challenge

the system. In total just under 30,000 poker hands

have been recorded and Sartre currently records

a profit of 9221 small bets. This results in a final

small bets per hand (sb/h) value of 0.30734. Fig.

5. depicts the sb/h values recorded over all hands.
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Fig. 5. The small bets per hand (sb/h) won by Sartre over every hand played.

5.4.5. Discussion
The results show a marked improvement be-

tween outcomes obtained over the years at the
annual computer poker competition. In particu-
lar, Sartre achieves a 6th place finish in the to-
tal bankroll division at the 2009 competition. The
following year, using the updated strategy, Sartre
now achieves a 3rd place finish (out of a total of 13
agents) in the same event. Finally, Sartre was de-
clared runner-up at the 2011 total bankroll division
and very nearly wins this competition. These re-
sults suggest that the maintenance performed and
the updated architecture does indeed have a sig-
nificant impact on the quality of the case-based
strategies produced. Furthermore, it is expected
that those agents that competed in the previous
year’s competition have improved between compe-
titions as well.

For the data collected against human opposi-
tion, while we can not comment on the quality
of the human opponents challenged, the curves in
Figs. 4. and 5. show a general upward trend and a
steady average profit, respectively.

6. Two-Player, No-Limit Texas Hold’em

We now examine the application of case-based
strategies in the more complicated domain of two-
player, no-limit Texas Hold’em. Here we take into
consideration the lessons learned during the main-

tenance that was performed in the two-player,

limit Hold’em domain. We use this information

and the insights obtained in the limit domain to

establish a finalised framework in the no-limit do-

main. However, before no-limit case-based strate-

gies can be produced, the difficulties of handling a

no-limit betting structure need to be addressed.

In the no-limit variation players’ bet sizes are no

longer restricted to fixed amounts, instead a player

can wager any amount they wish, up to the to-

tal amount of chips they possess. This simple rule

change has a profound effect on the nature of the

game, as well as on the development of comput-

erised agents that wish to handle a no-limit bet-

ting structure. In particular, the transition to a

no-limit domain results in unique challenges that

are not encountered in a limit poker environment.

First, there is the issue of establishing a set of ab-

stract betting actions that all real actions will be

mapped into during game play. This is referred to

as action abstraction and it allows the vast, con-

tinuous domain of no-limit Hold’em to be approxi-

mated by a much smaller abstract state space. Sec-

ond, given an established set of abstract actions,

a translation process is required that determines

how best to map real actions into their appropriate

abstract counterparts, as well as a reverse transla-

tion that maps abstract actions back into appro-

priate real-world betting decisions.
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6.1. Abstraction

Abstraction is a concept used by game theoretic
poker agents that derive ε-Nash equilibrium strate-
gies for the game of Texas Hold’em. As the actual
Hold’em game tree is much too large to represent
and solve explicitly, it becomes necessary to im-
pose certain abstractions that help restrict the size
of the original game. For Texas Hold’em, there are
two main types of abstraction:

1. Chance abstraction – which reduces the num-
ber of chance events that are required to
be dealt with. This is typically achieved by
grouping strategically similar hands into a re-
stricted set of buckets.

2. Action abstraction – which restricts the num-
ber of actions a player is allowed to perform.

Action abstractions can typically be avoided by
poker agents that specialise in limit poker, where
there are only 3 actions to choose from: fold (f),
check/call (c) or bet/raise (r). However in no-limit,
where a raise can take on any value, some sort
of action abstraction is required. This is achieved
by restricting the available bet/raise options to a
discrete set of categories based on fractions of the
current pot size. For example, a typical abstraction
such as: fcpa, restricts the allowed actions to:

– f – fold,
– c – call,
– p – bet the size of the pot
– a – all-in (i.e. the player bets all their remain-

ing chips)

Given this abstraction, all actions are inter-
preted by assigning the actual actions into one of
their abstract counterparts. While our case-based
strategies do not attempt to derive an ε-Nash equi-
librium solution for no-limit Hold’em, they are still
required to define an action abstraction in order to
restrict the number of actions allowed in the game
and hence reduce the state space.

6.2. Translation

Given that all bets need to be mapped into one
of the abstract actions, a translation process is
required to define the appropriate mapping. The
choice of translation needs to be considered care-
fully as some mappings can be easily exploited.

Fig. 6. Using the fcpa abstraction, the amounts above will

either be mapped as a pot sized bet – 20 or an all-in bet –

400.

The following example illustrates how the choice
of translation can lead to exploitability.

Consider a translation that maps bets into ab-
stract actions based on absolute distance, i.e. the
abstract action that is closest to the bet amount
is the one that the bet gets mapped in to. Given a
pot size of 20 chips and the fcpa abstraction (from
above) any bet between 20 and a maximum of 400
chips will either be mapped into a pot (p) sized bet
or an all-in (a) bet. Using this translation method,
a bet amount of 200 chips will be considered a pot-
sized bet, whereas a bet amount of only 20 chips
more, 220, will be considered an all-in bet. See Fig.
6.

There can be various benefits for a player in
making their opponent think that they have made
a pot-sized bet or an all-in bet. First, consider the
situation where an exploitive player bets 220 chips.
This bet amount will be mapped into the all-in ab-
stract action by an opponent that uses the fcpa ab-
straction. In other words, a player has made their
opponent believe that they have bet all 400 of their
chips, when in reality they have only risked 220. In
this situation, it is likely that an opponent will fold
most hands to an all-in bet, however even when
the opponent calls, the exploitive player has still
only wagered 220 chips as opposed to 400.

On the other hand, by betting just 20 chips less
(i.e. 200 instead of 220), this alternative situation
can have an even more dramatic effect on the out-
come of a hand. When an exploitive player makes
a bet of 200 chips this bet amount will be mapped
as a pot-sized bet and if their opponent decides
to call they will believe that they have only con-
tributed 20 chips to the pot when in reality they
would have invested 200 chips. If this is followed up
with a large all-in bet, an opponent that believes
they have only invested 20 chips in the pot is much
more likely to fold a mediocre hand than a player
that has contributed ten times that amount. As
such, an exploitive player has the ability to make
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their opponent believe they are only losing a small
proportion of their stack size by folding, when in
reality they are losing a lot more. This can lead to
large profits for the exploitive player.

The above example shows that a translation
method that uses deterministic mapping based on
absolute distance has the ability to be exploited
simply by selecting particular bet amounts. Schni-
zlein et al. [30] formalise this type of translation
as hard translation. Hard translation is a many to
one mapping that maps an unabstracted betting
value into an abstract action based on a chosen
distance metric. Given a unique unabstracted bet-
ting value, hard translation will always map this
value into the same abstract action. A disadvan-
tage of hard translation is that an opponent can
exploit this mapping simply by selecting particular
betting values. To overcome this problem, a more
robust translation procedure is required, one that
cannot be exploited in such a way. Schnizlein et
al. [30] also formalise an alternative soft transla-
tion that addresses some of the shortcomings of
hard translation. Soft translation is a probabilistic
state translation that uses normalised weights as
similarity measures to map an unabstracted bet-
ting value into an abstract action. The use of a
probabilistic mapping ensures that soft translation
cannot be exploited like hard translation can.

Having considered the issues to do with abstrac-
tion and translation, we are now able to present
our framework for producing case-based strategies
in the domain of no-limit Hold’em.

6.3. A Framework for Producing Case-Based
Strategies in Two-Player, No-Limit Texas
Hold’em

We now present the final framework we have
established for producing case-based strategies in
the domain of two-player, no-limit Texas Hold’em.
In order to define the framework it is necessary to
specify the following four conditions:

1. The action abstraction used
2. The type of state translation used and where

this occurs within the architecture
3. A representation for encoding cases and game

state information
4. The corresponding similarity metrics required

for decision generalisation.

Table 9

The action abstraction used by our case-based strategies.

f fold

c call

q quarter pot

h half pot

i three quarter pot

p pot

d double pot

v five times pot

t ten times pot

a all in

The conditions specified above are an extrapo-
lation of those that were used to define the frame-
work for producing case-based strategies in the
limit Hold’em domain.

6.3.1. Action Abstraction
Within our framework, we use the following ac-

tion abstraction: fcqhipdvta. Table 9 provides an
explanation of the symbols used.

6.3.2. State Translation
Define A = {q, h, i, p, d, v, t, a} to be the set of

abstract betting actions. Actions f and c are omit-
ted from A as these require no mapping. The ex-
act translation parameters that are used differ de-
pending on where translation takes place within
the system architecture, as follows:

1. During case-base construction hand history
logs from previously played hands are re-
quired to be encoded into cases. Here hard
translation is specified by the following func-
tion Th : < → A:

Th(b) =

{
x if x

b >
b
y

y otherwise
(3)

where b ∈ < is the proportion of the total
pot that has been bet in the actual game and
x, y ∈ A are abstract actions that map to
actual pot proportions in the real game and
x <= b < y. The fact that hard translation
has the capability to be exploited is not a
concern during case-base construction. Hard
translation is used during this stage to ensure
that re-training the system with the same
hand history data will result in the same case-
base.
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2. During actual game play real betting actions
observed during a hand are required to be
mapped into appropriate abstract actions.
This is equivalent to the translation process
required of ε-Nash equilibrium agents that
solve an abstract extensive form game, such
as [5,15,30]. Observant opponents have the
capability to exploit deterministic mappings
during game play, hence a soft translation
function is used for this stage, Ts : < →
A, given by the following probabilistic equa-
tions:

P (x) =

x
b −

x
y

1− x
y

(4)

P (y) =

b
y −

x
y

1− x
y

(5)

where once again, b ∈ < is the proportion
of the total pot that has been bet in the ac-
tual game and x, y ∈ A are abstract actions
that map to actual pot proportions in the
real game and x <= b < y. Note that when
b = x, P (x) = 1 and P (y) = 0 and when
b = y, P (x) = 0 and P (y) = 1. Hence, a
betting action that maps directly to an ab-
stract action in A does not need to be proba-
bilistically selected. On the other hand, when
b 6= x and b 6= y, abstract actions are chosen
probabilistically. Note that in Equations (4)
and (5), P (x) + P (y) 6= 1 and hence a final
abstract action is probabilistically chosen by
first normalising these values.

3. A final reverse translation phase is required
to map a chosen abstract action into a real
value to be used during game play. A reverse
mapping is required to map the abstract ac-
tion into an appropriate real betting value,
given the current game conditions. The fol-
lowing function is used to perform reverse
translation, Tr : A→ <:

Tr(x) = x′ ±∆x′ (6)

where x ∈ A and x′ ∈ < is the real value cor-
responding to abstract action x and ∆x′ is
some random proportion of the bet amount
that is used to ensure the strategy does not
always map abstract actions to their exact
real world counterparts. Randomisation is
used to limit any exploitability that could be

introduced by consistently betting the same
amount. For example, when x′ = 100 and
∆ = 0.3, any amount between 70 and 130
chips may be bet.

6.3.3. Case Representation
Table 10 depicts the case representation used

to capture important game state information in
the domain of two-player, no-limit Texas Hold’em.
As in the limit domain, a case is represented by
a collection of attribute-value pairs and separate
case-bases are constructed for the separate betting
rounds by processing a collection of hand histo-
ries and recording values for each of the attributes
listed.

Three of the four attributes (hand strength, bet-
ting sequence, board texture) are the same as those
used within the limit framework. The stack com-
mitment attribute was introduced especially for
the no-limit variation of the game. All attributes
were selected by the authors, given their impor-
tance in determining a final betting decision.

Each case also records a solution. Once again a
solution is made up of an action vector and an out-
come vector. The entries within each vector corre-
spond to a particular betting decision. Given the
extended set of betting actions that are available in
the no-limit domain, the solution vectors are rep-
resented as n-tuples (as opposed to triples, which
were used in the limit domain). Once again, the
entries within the action vector must sum to one.

Each of the attribute-value pairs are described
in more detail below.

1. Hand Strength: As in the limit domain, a player’s
hand is represented by calculating the E[HS2]
of the player’s cards and mapping these val-
ues into 1 out of 50 possible buckets. A stan-
dard bucketing approach is used where the 50
possible buckets are evenly divided.

2. Betting Sequence: Once again a string is used
to represent the betting sequence, which records
all observed actions that have taken place in
the current round, as well as previous rounds.
Notice however, that the characters used to
represent the betting sequence can be any
of the abstract actions defined in Table 9.
As such, there are a lot more possible no-
limit betting sequences than there are limit
sequences. Once again rounds are delimited
by hyphens.
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Table 10

The case representation used for producing case-based
strategies in the domain of no-limit Texas Hold’em.

Feature Type Example

1. Hand Strength Integer 1 – 50

2. Betting Sequence String pdc-cqc-c, cc-, dc-qc-ci, ...

3. Stack Commitment Integer 1,2,3,4

No-Salient, Flush-Possible,

4. Board Texture Class Straight-Possible, Flush-Highly-Possible,

...

Action n-tuple (0.0, 1.0, 0.0, 0.0, ...), ...

Outcome n-tuple (-∞, 36.0, -∞, -∞, ...), ...

3. Stack Commitment: In the no-limit variation of
Texas Hold’em players can wager any amount
up to their total stack size. The proportion of
chips committed by a player, compared to the
player’s stack size, is therefore of much greater
importance, compared to limit Hold’em. The
betting sequence maps bet amounts into dis-
crete categories based on their proportion of
the pot size. This results in information that
is lost about the total amount of chips a player
has contributed to the pot, relative to the size
of their starting stack. Once a player has con-
tributed a large proportion of their stack to
a pot, it becomes more important for that
player to remain in the hand, rather than fold,
i.e. they have become pot committed.
The stack commitment feature maps this
value into one of N categories, where N is a
specified granularity:

[0− 1

N
], [

1

N
− 2

N
], . . . , [

N − 2

N
−N − 1

N
][
N − 1

N
−1]

Hence, for a granularity of N = 4, a stack
commitment of 1 means the player has com-
mitted less than 25% of their initial stack, a
stack commitment of 2 means that player has
contributed somewhere between 25% and 50%
of their total stack, and so forth.

4. Board Texture: The details of the board tex-
ture attribute are exactly as those described
in the limit domain (see Section 5.3.1).

6.3.4. Similarity Metrics
Each feature requires a corresponding local sim-

ilarity metric in order to generalise decisions con-
tained in a set of data. Here we present the metrics
specified by our framework.

1. Hand Strength: Similarity between hand strength
values is determined by the same metric used
in the limit Hold’em domain, as specified by
Equation 2.

2. Betting Sequence: Recall that the following bet
discretisation is used: fcqhipdvta. Within this
representation there are some non-identical
bet sizes that are reasonably similar to each
other. For example, a bet of half the pot (h)
is quite close to a bet of three quarters of the
pot (i). The betting sequence similarity met-
ric we derived compares bet sizes against each
other that occur at the same location within
two betting sequences.
Let S1 and S2 be two betting sequences made
up of actions a ∈ A ∪ {f, c}, where the nota-
tion S1,i, S2,i refers to the ith character in the
betting sequences S1 and S2, respectively.
For two betting sequences to be considered
similar they first need to satisfy the following
conditions:

1. |S1| = |S2|
2. S1,i = c⇒ S2,i = c, and
S1,j = a⇒ S2,j = a

i.e. each sequence contains the same number
of elements and any calls (c) or all-in bets (a)
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Table 11

Bet Discretisation String

q h i p d v t

that occur within sequence S1 must also occur
at the same location in sequence S2

6.
Any two betting sequences that do not sat-
isfy the initial two conditions above are as-
signed a similarity value of 0. On the other
hand, if the two betting sequences do satisfy
the above conditions their bet sizes can then
be compared against each other and a simi-
larity value assigned.
Exactly how dissimilar two individual bets are
to each other can be quantified by how far
away from each other they occur within the
bet discretisation string, displayed in Table
11.
As h and i are neighbours in the discretisation
string they can be considered to occur at a
distance of 1 away from each other, δ(h, i) =
1, as opposed to say δ(q, t) = 6, which are at
opposite ends on the discretisation string.
For two betting sequences S1, S2 overall sim-
ilarity is determined by (7):

sim(S1, S2) =


1−

∑|S1|
i=0 δ(S1,i, S2,i)α if |S1| = |S2|,

S1,i = c⇒ S2,i = c,
S1,j = a⇒ S2,j = a

0 otherwise

(7)

where α is some constant rate of decay.
The following is a concrete example of how
similarity is computed for two non-identical
betting sequences. Consider two betting se-
quences, S1 = ihpc and S2 = dqpc. Here,
|S1| = 4 and |S2| = 4 and wherever there ex-
ists a check/call (c) in S1, there exists a corre-
sponding c in S2. As both conditions are sat-
isfied we can evaluate the top half of Equation
(7):

sim(S1, S2) = 1− [δ(i, d)α + δ(h, q)α + δ(p, p)α + δ(c, c)α]

= 1− [2 · α + 1 · α + 0 · α + 0 · α]

= 1− 3α

6A betting sequence consists of one or more betting
rounds, the above conditions must be satisfied for all bet-

ting rounds within the betting sequence.

Using a rate of decay of α = 0.05, gives a final
similarity of: 1− 0.15 = 0.85.

3. Stack Commitment: The stack commitment met-
ric uses an exponentially decreasing function.

sim(f1, f2) = e(−|f1−f2|) (8)

where, f1, f2 ∈ [1, N ] and N refers to the
granularity used for the stack commitment at-
tribute. This function was chosen as small dif-
ferences between two stack commitment at-
tributes (f1, f2) should result in large drops
in similarity.

4. Board Texture: Similarity between board tex-
ture values is determined by the same similar-
ity matrix used in the limit Hold’em domain,
as specified in Fig. 3.

6.4. Experimental Results

Once again we provide experimental results that
have been obtained from annual computer poker
competitions, where our case-based strategies have
challenged other computerised agents. We also
provide results against human opposition.

6.4.1. 2010 AAAI Computer Poker Competition
We submitted an early version of our two-player,

no-limit case-based strategy to the 2010 computer
poker competition. The submitted strategy was
trained on the hand history information of the pre-
vious year’s winning agent (i.e Hyperborean) and
used a probabilistic decision re-use policy.

In the no-limit competition, the Doyle’s Game
rule variation is used where both players begin
each hand with 200 big blinds. All matches played
were duplicate matches, where each competitor
played 200 duplicate matches (each consisting of
N = 3000 hands) against every other competitor.
The final results are displayed in Table 12. Our
entry is SartreNL.

Out of a total of five competitors, SartreNL
placed 4th in the total bankroll division and 2nd in
the instant runoff division. One important thing
to note is that the strategy played by SartreNL
was an early version and did not fully adhere to
the framework described in Section 6.3. In partic-
ular, the following abstraction was used: fcqhipdvt.
While this abstraction is very similar to that de-
scribed in Section 6.3, it is missing the all-in ac-
tion, as this was only added after the agent had
been submitted. A further difference is that the
strategy submitted only used hard translation.
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Table 12

2010 no-limit heads up bankroll and runoff results. Values
are in big blinds per hand with 95% confidence intervals.

No-Limit Heads up Bankroll Runoff No-Limit Heads up Total Bankroll Average Won/Lost

1. Hyperborean.iro 1. Tartanian4.tbr 2.156± 0.048

2. SartreNL 2. PokerBotSLO 1.458± 0.184

3. Tartanian4.iro 3. Hyperborean.tbr 1.212± 0.026

4. PokerBotSLO 4. SartreNL 0.537± 0.034

5. c4tw.iro 5. c4tw.tbr −5.362± 0.201

Table 13

2011 no-limit heads up bankroll and runoff results. Values are in big blinds per hand with 95% confidence intervals.

No-Limit Heads up Bankroll Runoff No-Limit Heads up Total Bankroll Average Won/Lost

1. Hyperborean-2011-2p-nolimit-iro 1. Lucky7 1.567± 0.053

2. SartreNL 2. SartreNL 1.302± 0.042

3. hugh 3. Hyperborean-2011-2p-nolimit-tbr 1.133± 0.026

4. Rembrant 4. player.kappa.nl 1.026± 0.105

5. Lucky7 5. hugh 0.968± 0.054

6. player.kappa.nl 6. Rembrant 0.464± 0.024

7. POMPEIA 7. POMPEIA −6.460± 0.051

6.4.2. 2011 AAAI Computer Poker Competition
The agent submitted to the 2011 competition

fully adhered to the framework described in Sec-
tion 6.3. Our entry was trained on hand history
information from the winner of the previous year’s
bankroll instant run-off competition (once again
Hyperborean). A max-frequency solution re-use
policy was employed. In the 2011 competition,
SartreNL placed 2nd in both winner determination
divisions, out of a total of seven competitors. Table
13 presents the final results.

6.4.3. Human Opponents – No-Limit
Once again, we have gathered results against

human opponents in the no-limit domain via our
browser based application. As with the real world
limit Hold’em results (see Section 5.4.4), these re-
sults are presented as a guide only and care must
be taking in drawing any final conclusions. Fig.
7. records the number of big blinds won in total
against all human opponents. SartreNL achieves
a final profit of 7539.5 big blinds in just under
9000 hands. Fig. 8. shows the big blinds per hand
(bb/h) won over all hands played, the final bb/h
value recorded is 0.9023.

6.4.4. Discussion
The results of the 2010 ACPC were somewhat

mixed as SartreNL performed very well in the in-
stant runoff division, placing 2nd, but not so well
in the total bankroll division where the average

profit won +0.537 ± 0.034 was lower than all but
one of the competitors. This relatively poor over-
all profit is most likely due to the 2010 version of
SartreNL not encoding an all-in action in its ab-
straction, which would have limited the amount of
chips that could be won.

After updating the strategy for the 2011 com-
petition to accurately reflect the framework de-
scribed, SartreNL’s performance and total profit
improves to +1.302 ± 0.042. As such SartreNL is
able to perform well in both winner determination
procedures, placing 2nd in both divisions of the
2011 competition out of seven competitors.

While it is interesting to get an initial idea of
how SartreNL does against human opponents, it
would be unwise to draw any conclusions from this
data, especially because not nearly enough hands
have been played (given the variance involved in
the no-limit variation of the game) to make any
sort of accurate assessment.

7. Multi-Player, Limit Texas Hold’em

The final sub-domain that we have applied and
evaluated case-based strategies within is multi-
player Texas Hold’em. Specifically, three-player,
limit Texas Hold’em, where an agent is required to
challenge two opponents instead of just one.
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Fig. 7. The number of big blinds won in total against every human opponent to challenge SartreNL.

Fig. 8. The big blinds per hand (bb/h) won by SartreNL over every hand played.

Once again, we use the lessons learned by apply-

ing maintenance in the two-player, limit Hold’em

domain in order to finalise a framework that can

handle multi-player betting. An interesting ques-

tion that arises within the three-player domain is

whether we can make use of the case-based strate-

gies that have already been developed in the two-

player domain, and if so, how do we determine a

suitable mapping between domains? Before pre-

senting our final framework for constructing multi-

player case-based strategies we investigate the ef-

ficacy of strategy switching between domains.

7.1. Strategy Switching

In the three-player domain, when one opponent
folds it would be useful if the case-based strategies,
previously developed for heads-up play, could be
used to make a betting decision. A type of switch-
ing strategy was described in [27] for game the-
oretic multi-player poker agents that solved two-
player sub-games for a small selection of initial bet-
ting sequences. Actions were chosen from an ap-
propriate sub-game when one of these preselected
sequences occurred in the real game. The strategy
switching approach that we describe differs from
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Fig. 9. Demonstrates how inter-domain mapping is performed for betting sequences when a fold takes place on the first
betting round in the three player domain. Each node represents a particular player position within their domain.

that in [27] as our approach does not solve a se-
lection of sub-games, but rather attempts to as-
sociate three-player betting sequences with appro-
priate two-player betting sequences, so that a two-
player case-base can be searched instead. Consider
the following pseudocode, where s refers to the
choice of a particular strategy:

s← ∅
if fold occurred then

if ∃ inter-domain mapping then
s← heads-up strategy

else
s← multi-player strategy

end if
else
s← multi-player strategy

end if

The pseudocode above requires a mapping be-
tween two separate domains in order to allow a
heads-up strategy to be applied within a multi-
player environment. One way that this can be
achieved is to develop a similarity metric that is
able to gauge how similar a game state encoun-
tered in a multiple-player domain is, compared to
a corresponding state in heads-up play. Given our
case representation for heads-up strategies, pre-
sented in Table 4, we require a suitable inter-
domain mapping for the betting sequence attribute.

7.1.1. Inter-Domain Mapping
A mapping can occur between domains as long

as one player has folded in the three-player do-
main. There are various ways an inter-domain
mapping can take place between a three-player

betting sequence and a two-player betting se-
quence. To determine how similar a three-player
betting sequence is to a two-player betting se-
quence, we need to first map the actions of the two
remaining players in the three-player domain to
actions of an appropriate player in the two-player
domain. An appropriate player is selected by con-
sidering the order in which the players act. We re-
fer to this as an inter-domain player mapping.

We can determine how similar two betting se-
quences from separate domains are by counting the
total number of bet/raise decisions taken by an ac-
tive player in the three-player domain and compar-
ing this with the total number of bet/raise deci-
sions made by the corresponding player in the two
player domain, as specified by the player mapping.
This ensures that the mapping between domains
retains the strength that each player exhibited by
betting or raising.

Fig. 9. illustrates a possible player mapping that
takes place when a fold has occurred during the
preflop round of play. The abbreviations in Fig.
9. stand for Dealer (D), Non Dealer (ND), Small
Blind (SB) and Big Blind (BB). The connec-
tions between the two domains (i.e. the red ar-
rows) specifies the player mapping and are further
explained below.

1. D → D: As the Dealer is the last player to
act postflop (in both domains) the total num-
ber of preflop raises made by D in the three-
player domain, must match the total number
of preflop raises made by D in the two-player
domain for the inter-domain sequences to be
considered similar.
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2. SB → ND: As the SB is the first player to
act postflop (in the three-player domain) and
the ND is the first player to act postflop (in
the two-player domain), the total number of
preflop raises made by the SB must match
the total number of preflop raises made by
the ND for the inter-domain sequences to be
considered similar.

3. BB → D/ND: For the final mapping, the or-
der in which the BB acts depends on which
player folded in the three-player domain (SB
or D). If the SB folded, the BB will act first
postflop and hence, the total number of pre-
flop raises made by the BB must match the
total number of preflop raises made by the
ND. On the other hand, if the D was the
player that folded, the BB will act last post-
flop and hence, the total number of preflop
raises made by the BB must match the to-
tal number of preflop raises made by the D
instead.

The above mapping works by ensuring a two-
player betting sequence exists where the total
number of preflop raise actions made by each
player are equal to the total preflop raise actions
made by the two remaining players in the three-
player domain. Results obtained with the above
mapping are presented in Section 7.3.1.

7.2. A Framework for Producing Case-Based
Strategies in Multi-Player, Limit Texas
Hold’em

We now present the final framework we have
established for producing multi-player, limit case-
based strategies, with or without strategy switch-
ing. Our framework consists of:

1. A representation for encoding cases and game
state information

2. The corresponding similarity metrics required
for decision generalisation.

3. When strategy switching is enabled, separate
similarity metrics for inter-domain mapping.

7.2.1. Case Representation
Table 14 depicts the final post-flop case repre-

sentation used to capture game state information
in the multi-player, limit Hold’em domain. No-
tice that the representation used for multi-player
cases is almost identical to that presented in Table

4. This similarity between representations is ben-
eficial as it simplifies the inter-domain mapping
that we require for strategy switching. The main
difference in Table 14 has to do with the values
used to represent the betting sequence attribute. As
multi-player sequences involve more players, the
sequences that record betting actions are larger
and more complicated than those in the two-player
domain.

Each of the attribute-value pairs are described
in more detail below.

1. Hand Strength: As in the previous domains, a
player’s hand is represented by calculating
the E[HS2] of the player’s cards and mapping
these values into 1 out of 50 possible buckets
via standard bucketing.

2. Betting Sequence: The details of the betting se-
quence attribute are similar to those described
in the two-player, limit domain where actions
are chosen from Alimit = {f, c, r}, and rounds
are delimited by hyphens. However, as more
players are involved in a hand, the betting se-
quences are different than those produced in
the two-player domain.

3. Board Texture: The nine board texture cate-
gories, defined in Table 5, are re-used in
the multi-player domain to capture important
public card information.

7.2.2. Similarity Metrics
Once again, each feature requires a correspond-

ing local similarity metric in order to generalise
decisions contained in a set of data.

1. Hand Strength: Similarity between hand strength
values is determined by the same metric used
in the two-player limit Hold’em domain, as
specified by Equation 2.

2. Betting Sequence: The metric used to deter-
mine similarity between betting sequences dif-
fers depending on whether strategy switching
is enabled or not.

Without Switching When strategy switching
is not required a three-player case-base will
be searched that contains three-player betting
sequences only. To determine similarity be-
tween these sequences, a stepped level simi-
larity metric is used that defines three levels
of similarity (level0, level1, level2), similar to
the two-player limit domain.
Given two betting sequences:



28 Jonathan Rubin and Ian Watson / Case-Based Strategies in Computer Poker

Table 14

The case representation used for producing case-based strategies in the domain of multi-player, limit Texas Hold’em.

Attribute Type Example

1. Hand Strength Integer 1 – 50

2. Betting Sequence String rcrrcc-crrcrrcc-ccr, rcc-ccc-ccrf, ...

No-Salient, Flush-Possible,

3. Board Texture Class Straight-Possible, Flush-Highly-Possible,

...

Action Triple (0.0, 0.95, 0.05), (0.6, 0.1, 0.3), ...

Outcome Triple (-∞, 9.0, -3.0), (-2.0, -4.5, -7.0), ...

level0: is satisfied if the two betting sequences
exactly match one another.

level1: is satisfied if the number of bets/raises
made by each active player is the same
for each individual, non-current betting
round.

level2: is satisfied if the total number of
bets/raises made by each active player
is the same for all non-current betting
rounds combined.

For level1 and level2 similarity above, the cur-
rent betting round must match exactly for two
betting sequences to be considered similar. As
in the two-player domain, similarity values of
1.0, 0.9 and 0.8 are assigned to the satisfied
similarity level, respectively.

With Switching On the other hand, when
strategy switching is enabled it is necessary
to search a two-player case-base (when an
opponent has folded). An inter-domain sim-
ilarity metric is required that is able to de-
termine similarity between the current three-
player betting sequence and the two-player se-
quences contained within the case-base. We
have already introduced the mapping used in
this situation in Section 7.1.1. Here we pro-
vide an example that illustrates the result of
this inter-domain mapping.
Consider the three-player betting sequence
that takes place on the flop:

frc− r

The preflop action proceeds as follows: D
folds, the SB raises and the BB calls. As a
fold has occurred we can apply inter-domain

mapping. The player mapping introduced in
Fig. 9. tells us that:

SB → ND

BB → D

Hence, we require a two-player betting se-
quence that involves a single raise by the ND
in the first round. The only legal two-player
betting sequence that is appropriate, is as fol-
lows:

crc− r

Where, D checks, the ND raises and the D
calls. As a sufficiently similar sequence has
been found, future betting decisions would be
based on the above two-player sequence.
Notice that the two-player betting sequence:

rc− r

which looks similar to the original three-
player sequence (frc − r), would not be con-
sidered similar via the inter-domain mapping.
While this sequence looks similar to the three-
player sequence above, it nevertheless con-
fuses the order in which bets/raises were made
and would not accurately capture the impor-
tant strength information that is captured
by the mapping we have described. Finally,
in cases where no sufficiently similar two-
player betting sequence was located, similar-
ity would be determined by reverting back to
a search of the three-player case-base.
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Table 15

Multi-player case-based strategy results with and without strategy switching. Values are in sb/h with 95% confidence intervals.

Non-Switching Switching

CaseBased3P 0.2101± 0.004 0.2218± 0.004

akuma 0.0898± 0.003 0.0875± 0.004

dpp −0.2995± 0.004 −0.3093± 0.004

3. Board Texture: Similarity between board tex-
ture values is determined by the same similar-
ity matrix used in previous domains, as spec-
ified in Fig. 3.

7.3. Experimental Results

We now present results obtained given the case-
based strategies produced in the domain of three-
player, limit Texas Hold’em. First, we evaluate the
effect of strategy switching by comparatively eval-
uating non-switching strategies with their switch-
ing counterparts. Next, we present results from the
2011 Annual Computer Poker Competition, where
our multi-player case-based strategies were chal-
lenged against some of the best multi-player limit
agents in the world.

7.3.1. Strategy Switching Results
Here, we produced two sets of case-based strate-

gies (one with switching, and one without) in or-
der to determine the effect that strategy switch-
ing had on performance. Both strategies were chal-
lenged against the two multi-player, limit agents:
dpp and akuma, which have been made publicly
available by the Knowledge Engineering Group at
Technische Universität Darmstadt [9]. The agent
dpp is described as a “mathematically fair bot”
that does no opponent modelling when making de-
cisions, whereas akuma uses Monte-Carlo simula-
tion with opponent modelling.

Both non-switching and switching case-based
strategies were challenged against dpp and akuma
for a total of 10 matches, where each match played
consisted of 1000 duplicate hands. Recall from Sec-
tion 3.2, that a three-player duplicate match in-
volves six seat enumerations in order for each agent
to experience the same game scenarios as their
opponents, therefore each match involved play-
ing 6000 hands. Finally, each of the 10 duplicate
matches were seeded so that the scenarios encoun-
tered by the non-switching strategy were the same
as those encountered by the switching strategy.
This reduces the influence that the stochastic na-

ture of the game has on the results. The final re-
sults are presented in small blinds won per hand
with a 95% confidence interval in Table 15.

Firstly, notice that the case-based strategies pro-
duced (whether switching or non-switching) are
able to beat both opponents at a significant level
with 95% confidence. Second, the results show that
multi-player case-based strategies with switching
are able to achieve a greater overall profit than
strategies that don’t switch. The win rate differ-
ence observed is significant with 95% confidence.
As long as the mapping does not destroy the infor-
mation about the current game state, we are able
to make use of the more detailed heads-up strate-
gies, which positively affects performance. The re-
sults suggest that the inter-domain mapping we
have defined is appropriate and can improve per-
formance by making use of strategies that have
previously been learned in a separate sub-domain.

7.3.2. 2011 AAAI Computer Poker Competition
We submitted a multi-player case-based strat-

egy for the first time at the 2011 ACPC held at
the Twenty-Fifth AAAI Conference on Artificial
Intelligence. Our entry, Sartre3P, competed in the
three-player limit Texas Hold’em competition and
employed strategy switching, as described above.
As strategy switching was used, Sartre3P was re-
quired to populate and search both three-player
and two-player case-bases in order to make bet-
ting decisions. Both case-bases were populated by
training on the hand history data of the winning
agents from the previous year’s total bankroll di-
visions (i.e. both two-player limit and three-player
limit competitions). The results of the 2011 com-
petition are given in Table 16. As with previ-
ous ACPC results, two winner determination pro-
cedures are displayed – instant runoff and to-
tal bankroll. Sartre3P placed 2nd in the instant
runoff division, out of 9 competitors. In this di-
vision Sartre3P was beaten only by the competi-
tor Hyperborean.iro. For the total bankroll divi-
sion, Sartre3P placed 1st and was the overall win-
ner of this division. Sartre3P’s average profit was
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Table 16

2011 multi-player limit bankroll and runoff results. Values are in sb/h with 95% confidence intervals.

Multi-player Limit Bankroll Runoff Multi-player Limit Total Bankroll Average Won/Lost

1. Hyperborean-2011-3p-limit-iro 1. Sartre3P 0.266± 0.024

2. Sartre3P 2. Hyperborean-2011-3p-limit-tbr 0.171± 0.023

3. LittleRock 3. AAIMontybot 0.130± 0.045

4. dcubot3plr 3. LittleRock 0.122± 0.022

5. Bnold3 5. OwnBot 0.016± 0.035

6. AAIMontybot 6. Bnold3 −0.084± 0.028

7. OwnBot 7. Entropy −0.099± 0.043

8. Entropy 8. player.zeta.3p −0.521± 0.040

9. player.zeta.3p

0.266±0.024 sb/h, which was significantly greater
than all other competitors in the competition.

7.3.3. Discussion
The results presented in Table 16 provide strong

support for the efficacy of case-based strategies
that have been trained on hand history data from
previous year’s competitions. Moreover, the results
demonstrate that strategies produced in this top-
down fashion actually have the capability to de-
feat their bottom-up counterparts. In particular,
Sartre3P was trained on hand history data con-
taining the decisions of the Hyperborean.tbr agent
from the 2010 three-player, limit competition, yet
the results from the 2011 competition show that
the top-down strategy used by Sartre3P, together
with strategy switching, was able to outperform the
2011 version of Hyperborean.tbr. While the differ-
ences between the 2010 and the 2011 versions of
Hyperborean.tbr are not known, it is reasonable
to expect that the quality of the 2011 version of
Hyperborean.tbr is more likely to have improved
(rather than degraded) over the year.

8. Conclusions

In conclusion, we have provided a comprehen-
sive overview of our case-based strategies that em-
ploy a top-down approach by generalising decisions
from a collection of data. We began with a descrip-
tion of the systematic maintenance performed on
our strategies in the domain of two-player, limit
Texas Hold’em. The final result was a framework
we have employed to produce case-based strate-
gies that have achieved top place finishes at in-
ternational computer poker competitions, where
the best computer poker agents in the world are

challenged against each other. Using the lessons
learned and insights obtained from the two-player,
limit Hold’em domain, we extrapolated our frame-
work to handle the more complicated domains
of two-player, no-limit Texas Hold’em and multi-
player, limit Texas Hold’em. In the no-limit do-
main, our case-based strategies produced the 2nd

best computer poker agent as judged by the results
of the 2011 ACPC. In the multi-player, limit do-
main our agent was the winner of the total bankroll
competition at the 2011 ACPC and achieved the
greatest profit against all other competitors. These
results show that the case-based frameworks we
have presented are able to produce strong, sophis-
ticated strategies that are competitive at an inter-
national level. Furthermore, we have shown that
by augmenting imitation-based, top-down strate-
gies with additional capabilities, such as strategy
switching, it is possible to further improve the per-
formance of the agents produced. This approach
was used by our agent, which competed at the
2011 multi-player, limit Texas Hold’em competi-
tion. The results from this event show that, for
the particular group of opponents challenged, our
case-based agent was able to perform better than
the expert whose decisions were used to train the
strategy in the first place.
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Situation assessment for plan retrieval in real-time

strategy games. In Klaus-Dieter Althoff, Ralph
Bergmann, Mirjam Minor, and Alexandre Hanft, eds.,

Advances in Case-Based Reasoning, 9th European

Conference, ECCBR 2008, volume 5239 of Lecture
Notes in Computer Science, pages 355–369. Springer,

2008.

[21] Yu. Nesterov. Excessive gap technique in nonsmooth

convex minimization. SIAM J. on Optimization,

16(1):235–249, 2005.
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