
A Multi-Task Imputation and Classification Neural Architecture for Early
Prediction of Sepsis from Multivariate Clinical Time Series

Yale Chang∗ , Jonathan Rubin∗, Gregory Boverman, Shruti Vij, Asif Rahman, Annamalai Natarajan,
Saman Parvaneh

Philips Research North America, Cambridge, USA
∗ Authors contributed equally

Abstract

Early prediction of sepsis onset can notify clinicians to
provide timely interventions to patients to improve their
clinical outcomes. The key question motivating this work
is: given a retrospective patient cohort consisting of mul-
tivariate clinical time series (e.g., vital signs and lab mea-
surement) and patients’ demographics, how to build a
model to predict the onset of sepsis six hours earlier? To
tackle this challenge, we first used a recurrent imputation
for time series (RITS) approach to impute missing values in
multivariate clinical time series. Second, we applied tem-
poral convolutional networks (TCN) to the RITS-imputed
data. Compared to other sequence prediction models, TCN
can effectively control the size of sequence history. Third,
when defining the loss function, we assigned custom time-
dependent weights to different types of errors. We achieved
9th place (team name = prna, utility score = 0.328) at
the 2019 PhysioNet Computing in Cardiology Challenge,
which evaluated our proposed model on a real-world sep-
sis patient cohort. At a follow-up ‘hackathon’ event, held
by the challenge organizers, an improved version of our
algorithm achieved 2nd place (utility score = 0.342).

1. Introduction

The goal of the 2019 PhysioNet Computing in Cardi-
ology Challenge was the early detection of sepsis using
physiological data [1]. Sepsis is a life-threatening con-
dition that puts 1.7 million lives at risk every year in the
United States alone [2]. Early detection of sepsis in the in-
tensive care unit would allow faster administration of an-
tibiotic treatment and improve patient outcomes, as well as
significantly reduce hospital expenses.

Automated systems that can accurately predict sepsis
early based on available clinical data can allow faster treat-
ment times and significant value for patients and care
givers. However, there are various challenges associated
with developing early prediction systems. First, predic-

tions that are too early or false positive predictions can end
up straining hospital resources, as well as being disadvan-
tageous to patients. Second, predictions that are too late
may reduce the impact of any administered intervention.
Third, accuracy of predictions are affected by the nature
of clinical time series data, which is messy and consists of
irregularly sampled and missing data points.

Previous works on sepsis prediction have employed time
varying Cox proportional hazards models [3], gradient
boosting [4] and Gaussian process RNNs [5]. To tackle the
challenges associated with this problem, we build a multi-
task neural architecture for early sepsis detection. First,
we define a loss function to approximate the provided cus-
tom utility function [1], penalizing both too early and too
late detection of sepsis. Second, we apply a recurrent im-
putation for time series (RITS) model [6] to impute miss-
ing values in multivariate clinical time series. Compared
to other commonly-used imputation techniques, RITS can
achieve significantly lower imputation error. By combin-
ing the RITS reconstruction loss with the utility loss, the
imputed feature values are adaptive to the prediction task.
Third, we train a TCN model using the RITS-imputed data
to maximize the approximated utility objective. Experi-
mental results on the PhysioNet Challenge 2019 patient
cohort demonstrate the effectiveness of our proposed ap-
proach.

2. Imputation Network

The input to our neural architecture is a matrix, X ,
that consists of multivariate clinical time series (includ-
ing vital signs, laboratory values and demographic in-
formation) that can contain missing values (−). Each
row, in X records the value of a feature and the columns
x1, x2, . . . xt ∈ X record the value of each feature over
time.

From X , we further derive two input matrices: 1) a ma-
trix of masking vectors,m, that indicates whether the mea-
surement is available (1) or missing (0); and 2) a δ matrix
that records the time (in hours) since the last available fea-



ture measurement. Examples of input matrix X , masking
matrix m, and matrix δ are shown in Equations (1) – (4).

As the input vector, xt, may contain missing values, it
cannot be fed directly into a recurrent neural network ar-
chitecture. Instead, we first process xt using a RITS net-
work based on [6]. The RITS network uses a combination
of history-based estimation and feature-based estimation
to impute missing values. History-based estimation pre-
dicts missing feature values using the hidden state vector
of a recurrent neural network. Feature-based estimation
uses information about the available surrounding features
at the current time, xt, to make a prediction about missing
variables.

X =


x1 x2 x3 · · · xt

x1 101 100 − 98 80
... 98.5 − − 97 99

xd 37 − − − −

 (1)

md
t =

{
0 ifxdt is unobserved
1 otherwise

(2)

δdt =


1 + δdt−1 if t > 1,md

t−1 = 0

1 if t > 1,md
t−1 = 1

0 if t = 1

(3)

m =

1 1 0 1 1
1 0 0 1 1
1 0 0 0 0

 δ =

0 1 1 2 1
0 1 2 3 1
0 1 2 3 4

 (4)

A standard recurrent neural network formulation is
shown in Equation (5). Here, σ(·) is some activation func-
tion, e.g. sigmoid, xt, ht are the input vector and recurrent
hidden state vector, respectively, and Wh, Uh are learned
network parameters.

ht = σ (Whht−1 +Uhxt + bh) (5)
x̂t = Wxht−1 + bx (6)
xc
t = mt � xt + (1−mt)� x̂t (7)
γt = exp {−max (0,Wγδt + bγ)} (8)
ht = σ (Wh [ht−1 � γt] +Uh [xc

t ◦mt] + bh) (9)
`t = 〈mt,Le (xt, x̂t)〉 (10)

Equations (6) – (10) detail the operations required to
perform imputation, based on a modified version of a re-
current neural architecture.

(6): Weight parameter matrices are learned and multi-
plied with the networks recurrent hidden state (at the pre-
vious time step) to estimate a new input vector with no
missing information, x̂t.

(7): A complement vector, xc
t , is formed by combining

both the available feature values with estimated informa-
tion when the feature value is missing, where � represents
element-wise multiplication.

(8): In addition to predicting missing information the
neural architecture also applies a temporal decay, γt, to the
recurrent hidden state, based on the time gap since a fea-
ture value was measured, i.e. the δ matrix. The longer the
time gap since the feature was measured results in more
exponential decay being applied to the corresponding fea-
ture.

(9): The final hidden state vector, ht, is derived via
a learned linear combination of history-based estimation
(captured in the previously described steps) and feature
based estimation that learns a further weight matrix, Uh,
to mix between available feature values at the present time
step, where ◦ is the concatenation operator. Equation
(9) shows the final hidden state vector computed using a
vanilla RNN formulation, whereas in practice an LSTM or
GRU could be used to make an outcome prediction for the
current time step.

(10): Finally, a loss function is applied (e.g. mean ab-
solute error or mean squared error) between the estimated
feature values and the true feature values (when available)
that allows the network to learn its weight matrix parame-
ters.

3. Sequence Prediction Network

Given input clinical time series (xc
1, ·,xc

t), which are
imputed through either RITS or forward-filling, a sequence
prediction model f(·) maps the input sequence to an output
sequence. In sepsis prediction, yt represents the probabil-
ity that the patient would have sepsis in six hours at the t-th
hour.

ŷ1, · · · , ŷt = f(xc
1, ·,xc

t) (11)

We select temporal convolutional network (TCN) [7] as
the sequence prediction model due to its four desirable
properties:

First, both the output sequence and each hidden layer
have the same length with the input sequence, which is
achieved by adding zero padding to subsequent layers. As
a result, TCN can output the patient’s probability of having
sepsis in six hours at any time during the ICU stay.

Second, TCN uses causal convolutions to avoid the leak-
age from future to the past.

Third, to enable TCN to utilize long history sequences,
dilated convolutions are applied. By setting the dilation
factor to be an exponential function of the network depth,
the receptive fields of hidden layers grow exponentially
w.r.t the network depth. Therefore, the receptive fields can
be flexibly adjusted by either changing 1) the number of
hidden layers; or 2) the kernel size.



Fourth, the model can be trained in parallel and therefore
faster than other sequence prediction models such as the
recurrent neural network.

4. Utility Loss

We derive an approximation of the utility function de-
fined in [1] and use it as the learning objective. For sepsis
detection, the optimal detection time t∗ is defined as six
hours before the onset time. For a true sepsis patient, the
prediction model would be rewarded 1 if it can correctly
predict sepsis at the optimal detection time. Both too early
prediction (earlier than six hours before the onset) or too
late prediction (later than six hours before the onset or after
the onset) would receive a reward less than 1. The reward
(utility) would decrease as the prediction time moves fur-
ther from the optimal detection time. We refer the reader
to [1] for an illustration of the utility curves.

For a non-sepsis patient, there would be a slight penalty
for falsely predicting sepsis. There would be no reward or
penalty for correctly identifying the patient as non-sepsis.

Specifically, the utility curve can be expressed as fol-
lows

UTP (t) = −0.05I[t < t∗ − 6] + (t− t∗ + 6)/6 (12)
I[t∗ − 6 ≤ t ≤ t∗] + (9− t+ t∗)/9I[t∗ < t ≤ t∗ + 9]

UFN (t) = 0I[t < t∗]− 2(t− t∗)/9I[t∗ ≤ t ≤ t∗ + 9]
(13)

UFP (t) = −0.05; UTN (t) = 0 (14)

For each of N patients, given the sepsis label sn, opti-
mal detection time t∗n, and predicted probability of sepsis
in six hours at the t-th hour during the patient’s ICU stay
pnt, we define the learning objective as maximizing the
approximated utility function:

θ∗ = argmax
θ

N∑
n=1

Tn∑
t=1

I[sn = 1]
(
pntUTP (t)+ (15)

(1− pnt)UFN (t)
)
+ I[sn = 0]

(
pntUFP (t)+

(1− pnt)UTN (t)
)

where pnt is modeled as a TCN and θ is the TCN parame-
ters.

5. Results

The dataset consists of multivariate clinical time series
(vital signs, lab measurements) and static variables (de-
mographics, unit admission information) collected from
60,000 patient ICU stays, from three separate hospital sys-
tems (A, B & C). 40,338 records from hospitals A & B,
were made available as public training and validation data.
The remaining patient ICU stays were held back as test

data. Data from Hospital C was only available within the
hidden test set, hence requiring algorithms to generalize
to an unseen hospital system. Full details of the data and
cohort are described in [1].

To train the imputation network, we randomly split the
dataset into 10 folds of equal size and apply 10-fold nested
cross validation. Among these 10 folds, 8 folds are used
as training set, 1 fold is used as validation set and the
remaining 1 fold is used as the test set. When the fold
i(i = 1, · · · , 9) is used as the test set, fold i − 1 is used
as the validation set. For test fold 0, fold 9 is used as the
validation set.

When training the imputation network, we regularize the
reconstruction loss with the utility loss to make the im-
puted values adaptive to the prediction. Both the network
architecture and hyperparameters are tuned by optimizing
the loss function on the validation set. The resulting LSTM
cell contains one hidden layer of size 64 with dropout rate
0.5.

After imputing missing values, we train a TCN to maxi-
mize the approximated utility function. The input features
consist of 1) imputed feature values output by the impu-
tation network; and 2) missingness indicator variables of
the raw vital signs and lab measurements. We use the
same train-validation-test split as training the imputation
network. After tuning the TCN architecture and hyperpa-
rameters, the optimal TCN consists of one hidden layer
with 100 kernels, where the size of each kernel is 5.

We compared the following approaches in terms of test
normalized utility:
• RITS: apply the trained RITS model to test set and com-
pute utility
• FF-TCN: train TCN on forward-filled time series and
missingness indicator variables
• RITS-TCN: train TCN on RITS-imputed time series
and missingness indicator variables

In addition to the neural architectures described above, a
tree-based XGBoost model was also submitted to a follow-
up ‘Hackathon’ event hosted by the challenge organizers.
• XGBoost: the feature set of the XGBoost model was
augmented with a number of observations related to vari-
able missingness, including binary features to indicate
whether a feature was missing, or had ever been measured,
as well as the measurement rate of each feature and time
since last non-missing measurement.

For these four approaches, we show their test normal-
ized utility scores of 10-fold cross validation in Table 1.

First, comparing RITS-TCN and RITS, RITS-TCN con-
sistently outperforms RITS on each test fold in achieving
higher test utility score. Therefore, it is necessary to train
a separate prediction network even though RITS can com-
bine the reconstruction loss (for imputation) and the utility
loss (for prediction) in its objective.



Second, comparing RITS-TCN and FF-TCN, RITS-
TCN outperforms FF-TCN on 8 of 10 test folds, indicating
the advantage of applying RITS to impute missing values
instead of simple forward filling.

Third, comparing different folds within each model, the
test utility scores have large variance, indicating the neces-
sity of building ensemble models. This is because the en-
semble model can reduce variance, leading to an improved
utility score on the test set.

Finally, the additional XGBoost model highlights the
usefulness of simpler model types.

Table 1. 10-fold cross validation normalized utility scores
of RITS, FF-TCN, RITS-TCN, and XGBoost models

Fold RITS FF-TCN RITS-TCN XGBoost
0 0.373 0.396 0.397 0.412
1 0.315 0.357 0.354 0.405
2 0.395 0.393 0.415 0.411
3 0.352 0.414 0.425 0.445
4 0.366 0.356 0.382 0.404
5 0.361 0.398 0.392 0.403
6 0.336 0.368 0.376 0.392
7 0.387 0.388 0.416 0.437
8 0.371 0.374 0.387 0.422
9 0.401 0.426 0.430 0.429

Mean (Std) 0.366 (0.025) 0.387 (0.022) 0.397 (0.024) 0.416 (0.017)

Our final submission for the PhysioNet challenge was
an ensemble of 3 RITS-TCN models trained using test set
folds 3, 7 and 9 from Table 1. The ensemble model would
predict sepsis if at least one model would predict sepsis.

The overall utility score achieved by the model was
0.328. Table 2 shows utility on the challenge test set bro-
ken down by hospital. The subsequent XGBoost model
developed at the follow-up ‘hackathon’ event, held by the
challenge organizers, improved the utility score to 0.342
and achieved an official rank of 2nd place. Table 2 also
shows the utility scores achieved by the official challenge
winner [8].

Table 2. Final official test utility scores per hospital for our
submission to 2019 PhysioNet Computing in Cardiology
Challenge and Hackathon (team name = prna). Rankings
are per event.

Hospital Set Challenge Hackathon Winner [8]
A 0.411 0.417 0.433
B 0.389 0.42 0.434
C -0.159 -0.156 -0.123

Full Set 0.328 0.342 0.360
Official Rank 9th 2nd 1st

6. Conclusions and Future Work

In this work, we built a sepsis prediction model by ap-
plying RITS to impute missing values in multivariate clin-

ical time series followed by TCN to maximize the approx-
imated utility objective. Experimental results on the Phy-
sioNet Challenge 2019 sepsis cohort demonstrate the ef-
fectiveness of our proposed approach. An additional XG-
Boost model submitted to a follow-up ‘hackathon’ event,
highlighted the effectiveness of simpler model types for
this problem.

The diversity of an ensemble model could be improved
by increasing the number of RITS-TCN models, as well as
including other prediction models types, potentially lead-
ing to higher test utility scores.

In future work, we would also like to explore model
interpretation through the attention mechanism for black-
box models, such as RITS and TCN, in order to better in-
corporate these models into clinicians’ workflows.

References

[1] Reyna MA, Josef C, Jeter R, Shashikumar SP, M. Bran-
don Westover MB, Nemati S, Clifford GD, Sharma A.
Early Prediction of Sepsis from Clinical Data: the Phys-
ioNet/Computing in Cardiology Challenge 2019. Critical
Care Medicine 2019;In press.

[2] https://www.cdc.gov/sepsis/datareports/
index.html.

[3] Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD,
Buchman TG. An Interpretable Machine Learning Model
for Accurate Prediction of Sepsis in the ICU. Critical care
medicine 2018;46(4):547–553.

[4] Barton C, Chettipally U, Zhou Y, Jiang Z, Lynn-Palevsky A,
Le S, Calvert J, Das R. Evaluation of a Machine Learning
Algorithm for up to 48-hour Advance Prediction of Sepsis
using Six Vital Signs. Computers in biology and medicine
2019;109:79–84.

[5] Futoma J, Hariharan S, Sendak M, Brajer N, Clement M,
Bedoya A, O’Brien C, Heller K. An Improved Multi-Output
Gaussian Process RNN with Real-Time Validation for Early
Sepsis Detection. 2nd Machine Learning for Healthcare
Conference MLHC 2017;.

[6] Cao W, Wang D, Li J, Zhou H, Li L, Li Y. BRITS: Bidirec-
tional Recurrent Imputation for Time Series. In Advances in
Neural Information Processing Systems. 2018; 6775–6785.

[7] Bai S, Kolter JZ, Koltun V. An Empirical Evaluation
of Generic Convolutional and Recurrent Networks for Se-
quence Modeling. arXiv preprint arXiv180301271 2018;.

[8] Morrill J, Kormilitzin A, Nevado-Holgado A, Swaminathan
S, Howison S, Lyons T. The Signature-based Model for Early
Detection of Sepsis from Electronic Health Records in the
Intensive Care Unit. In 2019 Computing in Cardiology Con-
ference (CinC). IEEE, 2019; (To Appear).

Address for correspondence:

Yale Chang / Jonathan Rubin
2 Canal Park, 3rd floor, Cambridge, MA 02141, USA
yale.chang@philips.com / jonathan.rubin@philips.com


