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Abstract. Deep neural networks (DNNs) have proven their effec-
tiveness on numerous tasks. However, research into the reliability of
DNNs falls behind their successful applications and remains to be
further investigated. In addition to prediction, it is also important to
evaluate how confident a DNN is about its predictions, especially
when those predictions are being used within medical applications.
In this paper, we quantify the uncertainty of DNNs for the task of
Chest X-Ray (CXR) image classification. We investigate uncertain-
ties of several commonly used DNN architectures including ResNet,
ResNeXt, DenseNet and SENet. We then propose an uncertainty-
based evaluation strategy that retains subsets of held-out test data
ordered via uncertainty quantification. We analyze the impact of this
strategy on the classifier performance. In addition, we also examine
the impact of setting uncertainty thresholds on the performance. Re-
sults show that utilizing uncertainty information may improve DNN
performance for some metrics and observations.

1 INTRODUCTION
Neural networks have been very successful in many fields such as
natural language processing [41, 23], computer vision [18, 8], speech
recognition [15, 5], machine translation [6], control system [36], auto
driving [4] and so on. However, there is much less research avail-
able on how reliable neural network predictions are. A common crit-
icism of neural networks is that they are a black box that can per-
form very well for many tasks, yet lacking interpretability. On the
other hand, it is very important to ensure the reliability of a system
involved in high risk fields, including stock-market analysis, self-
driving cars and medical imaging [28]. As the rapid development of
machine learning and artificial intelligence especially deep learning,
they are getting more and more applications in health areas includ-
ing disease diagnosis [9, 10], drug discovery [25, 30] and medical
imaging [7, 16, 33]. Rather than just being told a final result by an
machine learning algorithm, shareholders (doctors, physicians, radi-
ologists, etc) would like to know how “confident” a neural network
model is, so that they can take different actions according to differ-
ent confidence levels. For example, in a medical image classification
scenario, a neural network model is applied to detect whether a pa-
tient has a certain type of lung pathology by classifying his/her chest
X-ray images. An ideal situation would be that physicians can trust
the result of the neural network, if it is highly confident (low uncer-
tainty) about its prediction. On the contrary, if the neural network
gives a prediction with low confidence (or high uncertainty), then
the prediction could not be trusted and the patient’s scan should be
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further examined by a radiologist. Applying this mechanism is ben-
eficial since there are lots of X-ray images everyday but there are
limited radiologist resources. It can help prioritize X-ray images for
radiologists to examine, require more attention to low confidence in-
stances and support treatment recommendations for highly confident
instances.

Neural network-based deep learning algorithms are also getting
popular for medical X-ray image processing [27, 1, 35]. It is neces-
sary to examine the uncertainty of neural network models in medical
X-ray image processing. The confidence of a prediction by a machine
learning method can be measured by the uncertainty of the method
outputs. A typical way to estimate uncertainty is through Bayesian
learning [2], which regards the parameters of methods as random
variables and attempts to get the posterior distribution of the parame-
ters during training while marginalizing out the parameters to get the
distribution of the prediction during inference. Bayesian learning is
well developed in traditional non-neural network machine learning
framework [2]

2 RELATED WORKS

In recent years Bayesian learning and estimation of prediction un-
certainty have gained more and more attention in neural networks
context due to the wide application of deep neural networks in many
areas [11, 3, 12, 13, 22, 14, 32, 24, 40, 26, 12, 31, 32].

The authors in [3] introduced a method called “Bayes By Back-
prop” to learn the posterior distribution on the weights of neural net-
works and get weight uncertainty. Essentially this method assumes
the weights come from a multivariate Gaussian distribution and up-
dates the mean and covariance of the Gaussian instead of the weight
samples during training. During inference the network weights are
drawn from the learned distribution. This method is mathematically
grounded, backpropagation-compatible and can learn the distribution
of network weights directly, but it cannot utilize pre-trained model
and has to build the corresponding model for every neural network
architecture. [13] reformulated dropout in neural networks as approx-
imate Bayesian inference in deep Gaussian processes and thus can
estimate uncertainty in neural networks with dropout layers. This
method requires dropout layers applied before every weight layer.
During inference, the dropout layers with random 0-1s drawn from
Bernoulli distribution mask out some weights and only use a subset
of the weights learned during training phase to make a prediction. In
[22], the authors further proposed that there are two types of uncer-
tainties and they showed the benefits of explicitly formulating these
two uncertainties separately. The first type is called aleatoric uncer-
tainty (or data uncertainty), which is due to the noise in the data and
cannot be eliminated, while the other type is called epistemic uncer-



tainty (or model uncertainty), which accounts for uncertainty in the
model and can be eliminated given enough data. The network archi-
tectures have to be modified to add extra outputs in order to model
these uncertainties. [24] adopted this typing of uncertainty, but mod-
ified the formulation of aleatoric and epistemic uncertainty to avoid
the requirement of extra outputs.

[26] proposed a method called “Stochastic Weight Averaging
Gaussian (SWAG)” to approximate the posterior distribution over the
weights of neural networks as a Gaussian distribution by utilizing in-
formation in Stochastic Gradient Descent (SGD). This method has
an advantage in that it can be applied to almost all existing neural
networks without modifying their original architectures and can di-
rectly leverage pre-trained models. [34] also decomposed predictive
uncertainty in deep learning into two components and modeled them
separately. They shown that quantifying the uncertainty can help to
improve the predictive performance in medical image super resolu-
tion. [39] investigated the relationship between uncertain labels in
CheXpert [21] and Chest X-ray14 [37] data sets and the estimated
uncertainty for corresponding instances using Bayesian neural net-
work and suggested that utilizing uncertain labels helped prevent
over-confident for ambiguous instances.

Despite the above works in Bayesian deep neural network learn-
ing and uncertainty quantification, there are few works on evaluat-
ing the effects of uncertainty-based evaluation strategies for medical
image classification. To the best of our knowledge, we are the first
to apply uncertainty quantification strategies for chest X-ray image
classification using deep neural networks and evaluate their impacts
on performances. The main contributions of this paper are:

• We apply uncertainty quantification to five deep neural network
models for chest X-ray image classification and analyze their per-
formances.

• We investigate the impact that uncertainty information has on clas-
sification task performance by evaluating subsets of held-out test
data ordered via uncertainty quantification.

3 METHOD

In this section, we will introduce the basic ideas of Bayesian Neural
Networks and one of its approximations – SWAG [26], which is used
in this paper. We also describe the uncertainty quantification method
used in this paper.

3.1 Bayesian Neural Network

In the ordinary deterministic neural networks, we get point estima-
tion of the network weights w which are regarded as fixed values
and will not be changed after training. During inference, for each in-
put xi we get one deterministic prediction p(yi|xi) = p(yi|xi,w)
without getting the uncertainty information.

In the Bayesian neural network settings, in addition to the tar-
get prediction, we also want to get the uncertainty for the predic-
tion. To do so we regard the neural network weights as random vari-
ables that subject to some form of distribution and try to estimate
the posterior distribution of the network weights given the training
data during training. We then integrated out the weights and get the
distribution over the prediction during inference. From the predic-
tion distribution we can further calculate the prediction output and
corresponding uncertainty. More specifically, let D = {(X,Y )}
and w be the training data and weights of a neural network, respec-
tively. The ordinary deterministic neural network methods try to get a

point estimate of w by either maximum likelihood estimator (MLE)
w∗ = argmaxw p(D|w) or maximum a posterior (MAP): w∗ =

argmaxw p(w|D) where p(w|D) = p(w)p(D|w)
p(D)

∝ p(w)p(D|w).
The w∗ are fixed after training and used for inference for the new
data. In Bayesian learning, we estimate the posterior distribution
p(w|D) during training and marginalize out w during the inference
to get a probability distribution of the prediction.

p(y|x, D) = Ew∼p(w|D)[p(y|x,w)] =
∫
p(y|x,w)p(w|D)dw (1)

After getting the p(y|x), we can calculate the statistical moments of
the predicted variable and regard the first and second moment (i.e.,
mean and variance) as the prediction and uncertainty, respectively.

However, in practice there are two major difficulties. The first one
is that p(D) =

∫
p(w)p(D|w)dw is usually intractable and thus

we cannot get exact p(w|D). The second lies in that Eq. (1) is also
usually intractable for neural networks. One common approach to
deal with the first difficulty is to use a simpler form of distribution
q(w|θ) with hyperparameters θ to approximate p(w|D) by mini-
mizing the Kullback-Leibler (KL) divergence between q(w|θ) and
p(w|D). This turns the problem into an easier optimization prob-
lem:

θ∗ = argmin
θ

KL[q(w|θ)||p(w|D)]

= argmin
θ

∫
q(w|θ)log q(w|θ)

p(w|D)
dw

(2)

For the second difficulty, the usual approach is to use sampling to
estimate Eq. (1), and it becomes

p(y|x) ≈ Ew∼q(w|θ∗)[p(y|x,w)] ≈ 1
T

∑T
i=1 p(y|x,w

(i)) (3)

where w(i) ∼ q(w|θ∗).
People had proposed different methods to approximate the poste-

rior p(w|θ) or to get the samples of w [26, 3, 12, 13].

3.2 Stochastic Weight Averaging Gaussian (SWAG)
The basic idea of SWAG [26] is to regard the weights of the neu-
ral networks as random variables and get their statistical moments
through training with SGD. Then use these moments to fit a multi-
variate Gaussian to get the posterior distribution of the weights. Af-
ter the original training process in which we get the optimal weights,
we continue to train the model using the same training data with
SGD and get T samples of the weights w1, w2,· · · ,wt,· · · ,wT . The
mean of those samples is w = 1

T

∑T
t=1 wt. The mean of the square

is w2 = 1
T

∑T
t=1 w

2
t and we define a diagonal matrix Σdiag =

diag(w2−w2) and a deviation matrix R = [R1, · · · ,Rt, · · · ,RT ]
whose columns Rt = wt − wt, where wt is the running av-
erage of the first t weights samples wt = 1

t

∑t
j=1 wj . In the

original paper, the authors used the last K columns of R to get
the low rank approximation of R. The K-rank approximation is
R̂ = [RT−K+1, · · · ,RT ]. Then the mean and covariance matrix
for the fitted Gaussian are given by:

wSWA = w (4)

ΣSWA =
1

2
Σdiag +

1

2(K − 1)
R̂R̂T (5)

During inference, for each input (image) xi, sample the weights
from the Gaussian ws ∼ N(wSWA,ΣSWA) then update the batch
norm statistics by performing one epoch of forward pass, and then



the sample prediction is given by p(ŷis|xi) = p(yi|xi,ws). Repeat
the precedure for S times and we get S predictions ŷi1, ŷi2, · · · , ŷis,
· · · , ŷiS for the same input xi. By using these S predictions we can
get the final prediction and uncertainty. For regression problem, the
final prediction will be ŷi = 1

S

∑S
s=1 ŷis.

3.3 Uncertainty Quantification
Some methods had been proposed to quantify the uncertainty in clas-
sification [24, 22]. Here we adopt the method proposed by [24] since
it does not require extra output and does not need to modify the net-
work architectures.

For a classification problem, suppose there are C classes, denote
ps , [ps1, ps2, · · · , psc] = p(y|x, θs), s ∈ {1, 2, · · · , S} as the
softmax (or sigmoid in binary case if C = 2) output of the neu-
ral network for a same repeated input x for S times, then the pre-
dicted “probability” is the average of those S sample outputs p =
1
S

∑S
s=1 ps The predicted class label index is ŷ = argmaxc p. The

aleatoric uncertainty Ua and the epistemic uncertainty Ue are Ua =
1
S

∑S
s=1[diag(ps)−psp

T
s ], Ue = 1

S

∑S
s=1(ps−p)(ps−p)T The

total uncertainty is Utotal = Ua + Ue. For binary classification, the
sigmoid output is a scalar and the uncertainty equations are reduced
to

Ua =
1

S

S∑
s=1

ps(1− ps) (6)

Ue =
1

S

S∑
s=1

(ps − p)2 (7)

where p = 1
S

∑S
s=1 ps and ps = p(y = 1|x, θs) = 1 − p(y =

0|x, θs). The predicted label is:

ŷ =

{
1 p ≥ 0.5

0 p < 0.5
(8)

In this way, we can get uncertainties for all the instances.

3.4 Transfer Learning
Transfer learning is a widely used technique to help improve perfor-
mance for deep neural networks in image classification. Here we can
also benefit from transfer learning by loading pre-trained neural net-
work models trained by ImageNet (http://image-net.org)
dataset. The SWAG method has one advantageous characteristic that
it does not require to modify any architecture of the original neu-
ral networks and therefore we can fully utilize pre-trained models
trained by ImageNet dataset to speed up training process and get
better predictions. In the initialization stage, we download the pre-
trained model parameters and use them to initialize our models to be
trained.

3.5 Procedure
Basically we follow the method in [26] to approximate the Bayesian
neural network and the formulas in [24] to quantify uncertainty of
the models. The overall algorithm for SWAG and uncertainty quan-
tification is shown in Algorithm 1. We initialize the model with cor-
responding pre-trained model, and then fine-tune it by training using
chest X-ray images and observation labels. After that we perform
SWAG algorithm by continuing training using Stochastic Gradient
Descent for T epochs and calculate statistics w, w2, Σdiag and R̂,

Algorithm 1 Uncertainty Quantification

1: Input:
D = {(X,Y )} / Xi: training / evaluating chest X-ray images
and corresponding observation labels

2: Initialization:
load pre-trained neural network (NN) models by ImageNet

3: Training:
Fine-tune NN models using cheXpert dataset

4: Perform SWAG:
Continue training with SGD

i) train NN models using SGD for some epochs with D
ii) save statistics of the weights for those epochs
iii) calculate wSWA and ΣSWA using Eq. 4 and 5
vi) fit a Gaussian using wSWA as mean and ΣSWA as

covariance
Prediction

for s from 1 to S
draw weights ws ∼ N(wSWA|ΣSWA)
update batch norm statistics using D
p(yis|Xi) = p(yis|Xi,ws)

end for
5: Calculate Outputs:
p(yi|Xi) =

1
S

∑S
s=1 p(yis|Xi)

Calculate ŷi, Ua and Ue using Eq. (8), (6) and (7).
Utotal = Ua + Ue

6: Return:
ŷi, Ua, Ue, Utotal

from which we can get wSWA and ΣSWA using Eq. 4 and 5. Then
we fit a multivariate Gaussian using wSWA as mean and ΣSWA as
covariance and get an approximated distribution for the neural net-
work weights. When doing a prediction, an input chest X-ray image
is repeatedly fed into the network for S times, each time with a new
set of weights sampled from the Gaussian distribution. The S out-
put probabilities are used to calculate the final predicted label ŷi and
uncertainty Utotal = Ua + Ue. It is worthwhile to note that, after
drawing sample weights the network batch norm statistics need to
be updated for the models that use batch normalization. It can be
achieved by running one epoch with partial or full training set D.
More detailed justification for the necessity was given in the original
paper [26].

4 DATASET

We perform experiments using the CheXpert data set [21]. CheXpert
is a large chest X-ray dataset released by researchers at Stanford Uni-
versity. This dataset consists of 224,316 chest radiographs of 65,240
patients. Each data instance contains a chest X-ray image and a vec-
tor label describing the presence of 14 observations (pathologies) as
positive, negative, or uncertain. The labels were extracted from ra-
diology reports using natural language processing approaches. For
our experiments we focus on 5 observations, namely Cardiomegaly,
Edema, Atelectasis, Consolidation and Pleural Effusion. As [21] had
pointed out, these 5 observations were selected based on their clinical
importance and prevalence in this dataset. In their experiment they
also used these 5 observations to evaluate the labeling approaches. A
sample image for each observation is shown in Figure 1.

The original dataset consists of training set and validation set and
we do not have access to test set. The labels for the training set were
generated by automated rule-based labeler which extract informa-
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Figure 1: Sample image for each observation. From left to right: no finding (all negative), cardiomegaly, edema, consolidation, atelectasis and
pleural effusion

tion from radiology reports. This was done by the Stanford research
group who released the dataset. There are three possible values for
the label of an instance for a given observation, i.e., 1, 0 and −1. 1
means the observation is positive (or exists), 0 means negative (or
not exists), and −1 means not certain about whether the observation
exists. The labels for the validation set were determined by the ma-
jority vote from three board-certified radiologists and only contains
positive (1) or negative (0) values. The original paper [21] investi-
gated several different ways to deal with the uncertain labels (−1),
such as regarding them as positive (1), negative (0), the same with
the majority class, or a separate class. They found out that for differ-
ent observations, the optimal ways to deal with the uncertain labels
are different, and they gave the replacement for 5 observations men-
tioned above. Based on the results from [21] and for simplicity, we
replace the uncertain labels with 0 or 1 for different observations.

Specifically, the uncertain labels of cardiomegaly, consolidation
and pleural effusion are replaced with 0, while edema and atelecta-
sis with 1. Therefore the problem becomes a multi-label binary im-
age classification problem. The predicted result is a five dimensional
vector with element value being 1 or 0, where 1 means that the net-
work predicts existence for the corresponding observation while 0
means the network predicts not existence of the corresponding obser-
vation. We follow the official training set / validation set split given
by the data set provider. After removing invalid instances, we get a
total number of 223,414 instances for training and 234 instances for
validation. We first initialize the neural network’s parameters with
corresponding downloaded pre-trained model parameters, and then
train the neural network using the training set and test their perfor-
mance on the validation set. We will use the original training set as
the training set and original validation set as the evaluation set in our
experiments.

In Figure 2 we show the patient statistics of the 5 observations af-
ter replacing the uncertain labels in the training set. The prevalence
is the ratio of the number of positive instances over the total num-
ber of instances. From the figure we can see that all five observations
are imbalance as the prevalence being under 50%. Besides, there is
a gap in the prevalence for the training and evaluation sets in all ob-
servations, which will probably affect the performance of the neural
network models.

5 EXPERIMENT
In this section, we perform experiments and present the investiga-
tion results of uncertainty quantification and strategy on five dif-
ferent neural network models using PyTorch implementation. These
neural networks are DenseNet [20] with 121 layers (denote as
DenseNet121), DenseNet with 201 layers (denote as DenseNet201),
ResNet [17] with 152 layers (denote as ResNet152), ResNeXt [38]
with 101 layers (denote as ResNeXt101) and Squeeze-and-Excitation
network [19] with 154 layers (denote as SENet154). ResNet uses

(a) Prevalence of observations (b) Gender proportion

(c) Training set age histogram (d) Validation set age histogram

Figure 2: Patient statistics

skip connections to mitigrate the gradient vanishment problem and
was the winner of ILSVRC 2015 [29] and COCO 2015 (http://
cocodataset.org) competition. ResNeXt is a variant of ResNet
and won the 2nd place in ILSVRC 2016 classification task. DenseNet
further utilizes the concept of skip connections by connecting previ-
ous layer output to all its subsequent layers and forming “dense” skip
connections. DenseNet further alleviates vanishing gradient prob-
lem, reduce number of parameters and reuses intermediate features,
and is widely used since it was proposed. SENet uses squeeze-and-
excitation block to model image channel interdependencies and won
the ILSVRC 2017 competition for classification task.

All networks are trained as binary classifiers for multi-label clas-
sification instead of training separate models for each class.

The pipeline of the experiment is shown in Figure 4. We use
PyTorch implementation. The neural network models and pre-
trained parameters are from torchvision (except SENet154 which
is from pretrainedmodels, https://github.com/Cadene/
pretrained-models.pytorch).

In our experiment we set the number of sample weights T = 5,
the number of columns of the deviation matrix K = 10 and the
number of repeated prediction samples S = 10. During training,
we use Adam optimizer with weight decay regularizer and ReduceL-
ROnPlateau learning rate scheduler. The the initial learning rate is
1×10−5 and weight decay coefficient is 0.005. The maximum num-
ber of fine-tuning epoch is 50 epochs. The original chest X-ray im-
ages are resized and randomly cropped to 256 × 256 (except for
SENet154 which has a fixed input size 224 × 224). We stop fine-
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Figure 3: Comparison of performance between original deterministic network and Bayesian neural network with uncertainty strategy. The
neural network is DenseNet with 201 layers.

Figure 4: Pipeline of the experiment

tuning the model when the AUC (explained below) does not increase
for consecutive 10 epochs and save the model with the best AUC as
the optimal trained model.

We use four metrics to evaluate the network classification perfor-
mance: Area under curve (AUC), Sensitivity, Specifity and Precision.
Those metrics are widely used for machine learning and medicine
community. The AUC is often used to measure the quality of a clas-
sifier and is defined as the area under the Receiver Operating Charac-
teristic (ROC) curve which plots the sensitivity against the false pos-
itive rate. The sensitivity (or true positive rate or recall) is defined as
the ratio of the number of correctly predicted positive instances over
the number of total positive instances. The specificity is defined as
the ratio of the number of correctly predicted negative instances over
the total number of negative instances. And the precision is defined
as the ratio of the number of correctly predicted positive instances
over the number of instances that are predicted as positive.

5.1 Without Strategy

First we compare the AUC of the original ordinary deterministic neu-
ral networks with the AUC corresponding neural networks after per-
forming SWAG but before applying any uncertainty strategies. The
results are shown in Table 1. The “Average” column is the average
over all 5 observations. The bold font indicates better performance.
For edema and pleural effusion, the original neural network performs

better than SWAG for most of the networks. For cardimegaly, con-
solidation and atelectasis, the performances are mixed. This maybe
because edema and pleural effusion are harder to detect and more
sensitive to network weights perturbation. On the whole the SWAG
algorithm does not outperform the original neural network. These
might be accountable because SWAG uses a Gaussian to approxi-
mate the distribution over the optimal weights and then draws sam-
ple weights from the approximated Gaussian distribution, and may
deviate from the optimal weights if the approximation is inaccurate.
Therefore we need to adopt some strategy to prevent the performance
from deterioration. The benefit lies in that we can get the uncertainty
estimation for each prediction while keeping similar or even better
prediction results.

Table 1: Original AUC vs SWAG AUC

Networks
AUC Average Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion

Original SWAG Original SWAG Original SWAG Original SWAG Original SWAG Original SWAG

Resnet152 0.8831 0.8786 0.8376 0.8149 0.9123 0.8713 0.8927 0.9234 0.8543 0.8537 0.9184 0.9298
ResNext101 0.8807 0.8726 0.8013 0.8339 0.9212 0.8748 0.9250 0.9311 0.8246 0.8162 0.9314 0.9071

SEnet154 0.8794 0.8695 0.8203 0.8040 0.9195 0.8702 0.9216 0.9187 0.8056 0.8553 0.9301 0.8992
Densenet121 0.8842 0.8942 0.8436 0.8752 0.9264 0.8940 0.9139 0.9512 0.8153 0.8489 0.9220 0.9016
Densenet201 0.8793 0.8356 0.8259 0.8397 0.9165 0.8796 0.9313 0.7739 0.7936 0.7714 0.9294 0.9132

5.2 With Coverage Strategy
Next we utilize the uncertainty quantification information to deter-
mine if the performances can be improved. One strategy is to sort
instances according to uncertainty in an ascending order, and then
take those instances with less uncertainty into consideration and dis-
card the rest. In clinical practice, the discarded instances could be
flagged for further evaluation by a physician.

Ideally we would expect a decreasing trend for the metrics when
data coverage increase as shown in Figure 6. The horizontal axis
“Data coverage” is the percentage of instances being considered. For
example, a data coverage of 20% means that only the top twenty per-
cent of the least uncertain (or the most confident) instances are taken
into consideration and the rest are discarded.

Figure 3 shows the comparison of performances with regard to the
foure metrics (AUC, sensitivity, specificity and precision) between



(a) Cardiomegaly (b) Edema (c) Consolidation (d) Atelectasis (e) Pleural effusion

Figure 5: Estimated total uncertainty (aleatoric + epistemic) histogram for each observation

Figure 6: Expected ideal performance. The metric decreases as data
coverage increases.

the original deterministic networks and Bayesian neural networks
with uncertainty strategy. The solid lines are the Bayesian neural net-
work with uncertainty strategy, while the dashed lines are the origi-
nal ordinary deterministic networks without any uncertainty strategy.
Different colors represent different observations.

From Figure 3 we can see that for edema and pleural effusion, the
AUC decreases as the coverage increases, and are above the corre-
sponding original AUC until around 45% and 90% coverage, respec-
tively. This means that applying the uncertainty strategy can improve
AUC for these two observations. The highest AUC gain can be 8%
and 6% for edema and pleural effusion, respectively. We also observe
similar trend in sensitivity, specificity and precision for both edema
and pleural effusion. Three observations (cardiomegaly, atelectasis
and consolidation) have low sensitivity as most of the predictions are
negative. On the contrary the specificity is high.

The highest gains for applying the uncertainty strategy are shown
in the Table 2. The effect of the uncertainty strategy over the five ob-

Table 2: Perfomance gain for edema and pleural effusion. The values
are the absolute and relative gains

Gain (% Gain) AUC Sensitivity Specificity Precision

Edema 0.0835(9.11%) 0.3778(60.71%) 0.0476(5.00%) 0.2432(32.14%)
Pleural effusion 0.0706(7.60%) 0.2687(36.73%) 0.0778(8.44%) 0.2097(26.53%)

servations with the model DenseNet201 can be summarized as in the
Table 3. The symbols

√
, ×, ◦ and − represents helpful, not helpful,

mixed behavior and missing value, respectively. For edema and pleu-
ral effusion, applying uncertainty strategy is beneficial for improving
all four metrics. However, for other observations, it does not show
benefits or only limited benefits for some metrics. The reason why
it show varied behavior may be interesting and needs further inves-
tigation. Similarly, we summarize the effect of applying uncertainty
strategy for different neural network architectures and the results are
shown in Table 4 to Table 7. From the tables we can see that applying

Table 3: Effect of uncertainty strategy for DenseNet201.

Densenet201 AUC Sens. Spec. Prec.

Cardiomegaly × ×
√

◦
Edema

√ √ √ √

Consolidation × × ◦ -
Atelectasis ◦ × ◦ ×

Pleural effusion
√ √ √ √

√
: helpful;×: not helpful; ◦: mixed behavior; -: missing value

uncertainty strategy will help to improve some performance metrics
for all four neural network models.

Table 4: Effect of uncertainty strategy for different networks

ResNet152 AUC Sens. Spec. Prec.

Cardiomegaly
√

× - -
Edema × ×

√ √

Consolidation × × - -
Atelectasis × ×

√ √

Pleural effusion
√ √ √ √

√
: helpful;×: not helpful; ◦: mixed behavior; -: missing value

Table 5: Effect of uncertainty strategy for different networks

SENet154 AUC Sens. Spec. Prec.

Cardiomegaly
√

- - -
Edema × ×

√
×

Consolidation
√

- - -
Atelectasis ◦ - × -

Pleural effusion
√

×
√ √

√
: helpful;×: not helpful; ◦: mixed behavior; -: missing value

Despite that for some observations (e.g., pleural effusion), several
metrics performance benefit a lot from applying the uncertainty strat-
egy, we should also notice that the strategy does not help to improve
performance for some other observations with regard to these met-
rics, and in some cases even degrade the performance. The reasons
behind might be varied and needs more investigation. For example,
this may be that the neural network weight distribution approximated
by the SWAG algorithm does not capture the true distribution, or
even the uncertainty quantification formulas are inappropriate.

5.3 With Absolute Threshold Strategy
We also plot the total uncertainty distribution for each observation, as
shown in Figure 5. From the figure we can see that for cardiomegaly,
the estimated uncertainty tends to be smaller, while for edema, at-
electasis and plueral effusion, the proportion of larger estimated un-
certainty is higher. Consolidation has a relatively even distribution
for estimated uncertainty. This suggest that edema, atelectasis and



Figure 7: Comparison of performance between original deterministic network and Bayesian neural network with uncertainty threshold.

Table 6: Effect of uncertainty strategy for different networks

ResNext101 AUC Sens. Spec. Prec.

Cardiomegaly
√

× × ×
Edema × ×

√ √

Consolidation
√

×
√

-
Atelectasis ◦

√
× ×

Pleural effusion
√ √ √ √

√
: helpful;×: not helpful; ◦: mixed behavior; -: missing value

Table 7: Effect of uncertainty strategy for different networks

DenseNet121 AUC Sens. Spec. Prec.

Cardiomegaly × × - ◦
Edema × ×

√ √

Consolidation
√

- - -
Atelectasis

√
◦

√ √

Pleural effusion
√ √ √ √

√
: helpful;×: not helpful; ◦: mixed behavior; -: missing value

pleural effusion are more prone to be affected by setting an uncer-
tainty threshold. Combining this finding with the results in Table
2, we set thresholds for both edema and pleural effusion to check
the influence on metric performance. We only consider the instances
whose estimated uncertainty is smaller than the threshold to compute
the performance metrics. We vary the threshold from 0.2 to 0.24 by a
step of 0.01 and the results are shown in Figure 7. The black dashed
line is the average metric values of the original deterministic neural
network, while the solid color thin lines are metric values for each
observation, and the thick brown line is the average metric values
of all five observation after applying threshold only to edema and
pleural effusion. Comparing the thick brown line with the dash black
line, we can see that the average specificity and precision have been
improved while the average AUC and sensitivity roughly keep the
same. This means that applying uncertainty threshold to edema and
pleural effusion is beneficial.

6 CONCLUSION

In this paper we investigate uncertainty quantification in medical im-
age classification using Bayesian deep neural networks. We train five
different deep neural network models on the CheXpert X-ray image
data for five clinical observations and quantify the model uncertainty.
Then we analyze the performance of the network for situations with
and without applying uncertainty strategy. The results show that the
uncertainty quantification and strategy improve several performance
metrics for some observations. This suggests that uncertainty quan-
tification is helpful in medical image classification using neural net-
works. However, the results also show that in some cases the strategy
is not helpful, or can even deteriorate the performance. Further anal-
ysis may be needed to examine this phenomenon.
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