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Abstract 
 
 

Poker provides a challenging domain for Artificial Intelligence research due to the 

game’s properties such as hidden information (the other player’s cards) and non-

determinism (random shuffling of the deck). Recent approaches to Poker research have 

required intensive knowledge engineering efforts. This thesis discusses the design and 

development of a CASe-based Poker playER (CASPER) that uses the Case-Based 

Reasoning methodology to make betting decisions at the poker table. The results 

suggest it is possible to record instances of games played between strong poker players 

and then reuse these to obtain a similar performance therefore bypassing the need for 

the initial, intensive knowledge engineering process. An investigation into deriving 

optimal feature weights using evolutionary algorithms has also been conducted. Casper 

has been extensively evaluated by challenging various sets of opponents, including both 

computerised opponents and real opponents.   
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Chapter 1 
 
Introduction 
 
 

1.1 AI and Games 

Games offer a well suited domain for Artificial Intelligence (AI) investigation 

and experimentation due to the fact that a game is usually composed of several well-

defined rules which players must adhere to. Most games have precise goals and 

objectives which players must meet to succeed. For a large majority of games the rules 

imposed are quite simple, yet the game play itself involves a large number of very 

complex strategies. Furthermore, a performance metric is naturally embedded into the 

game itself. Success can therefore easily be measured by factors such as the amount of 

games won or the ability to beat certain opponents. 

 Games are often classified by the amount of information available to the players. 

If a player has access to all the information they require about the game during play then 

the game can be classified as having perfect information. However, if some of that 

information is hidden from the player the game is known as having imperfect 

information. Take for example the game of chess. Chess is a game of perfect 

information because each player can look down upon the board and obtain all the 

information necessary to make their playing decisions. On the other hand, the game of 

poker is a game of imperfect information. In poker players are given cards which only 

they can see, therefore players now have to make decisions based on hidden information 

because they cannot see their opponents’ cards. 

 Games can be further classified as either deterministic or stochastic. If a game 

contains chance elements, such as the roll of a dice, this introduces randomness into the 

game. These types of games are known as stochastic games and examples include 

bridge, backgammon and poker. The absence of these chance elements ensures the game 

is deterministic. Games such as chess, checkers and go are examples of deterministic 

games. 
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 Until recently the main focus of AI related research has been on deterministic 

games with perfect information such as chess (Campbell, et al. 2002) and checkers 

(Schaeffer, et al. 1996). Success for these types of games has mainly come about 

through the use of brute-force search techniques and increases in hardware processing 

speeds (Schaeffer, et al. 1992). However, these approaches have been criticized for a 

lack of applicability to real world problems. It is hoped that by studying stochastic 

games with imperfect information results obtained may be more applicable to real world 

domains. Stochastic, imperfect information games make it necessary to handle uncertain 

knowledge and issues such as dealing with chance and deception (Davidson 2002), 

issues that are closer to the reality that we live in. 

1.2 AI and Poker 

Poker is a stochastic game with imperfect information. It is stochastic because 

the shuffling of cards introduces randomness into the game. It is a game of imperfect 

information because players cannot see their opponent’s cards, therefore players need to 

make decisions based on hidden information. Given the relatively simple rules of the 

game there are an enormous amount of subtle and sophisticated scenarios that can occur 

during a hand of play (this is particularly true of the Texas Hold’em variation). Poker 

ensures that issues such as probabilistic reasoning and opponent modelling needs to be 

considered. Poker is an inherently psychological game. It is crucial to have an 

understanding of your opponent and how they think to be able to play well. All these 

factors make poker a challenging domain for AI related research where advances are 

likely to be beneficial outside the realm of poker itself. 

The University of Alberta Poker Research Group1 has been extensively 

researching computer poker for several years. The result of their efforts have been the 

production of systems such as Poki (Davidson 2002) and PsOpti (Billings, et al. 2003). 

PsOpti was designed to challenge only one opponent at the poker table, whereas Poki is 

more suited to play at a full table, i.e. consisting of 10 players. Poki has been 

extensively tested against real opponents using “play-money” and the results indicate 

that Poki consistently makes profit against its competition. Poki has been rated as 

having intermediate playing strength at a full poker table (Davidson 2002).  
                                                 
1 http://www.cs.ualberta.ca/~games/poker/ 
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1.2.1 CBR and Poker 

 While there has been much focus on AI and poker related research in the recent 

past, especially from the University of Alberta Poker Research Group, there has been 

little effort in applying the tools and techniques of Case-Based Reasoning (CBR) to the 

area of computer poker. CBR is an AI methodology (Mántaras, et al. 2005) that adapts 

and uses solutions to past problems to resolve current problems. It is often true that 

poker players act in a way that has proven to be successful in similar, past situations. An 

introduction to CBR is given in section 1.4. 

1.3 The game of Poker 

There are numerous variations of the game of poker available. The games differ 

by various aspects such as the number of hole cards dealt (cards which only one player 

can see and use to make their best hand), the number of community cards dealt (cards 

which all players can see and use to make their best hand), the order in which players 

bet and the limits imposed on a player’s bet. 

1.3.1 Betting 

There are two variations which control the amount that a player may bet: limit 

and no limit. In a limit game player’s bets are restricted to a certain amount. Conversely, 

in no limit there is no restriction on the amount that a player can bet. A player’s betting 

decision can be to fold, check, call, bet or raise. These are described below: 

 

Fold:  A player can fold their cards if they are facing a bet by another player, 

but they don’t wish to match the bet. Once a player folds they are no 

longer involved in the current hand, but can still participate in any future 

hands. 

 

Check/Call:  When it comes time for a player to make his/her decision they can check 

if there have been no bets made by other players. Checking means the 

player does not need to invest any of their money into the pot to stay in 

the current hand. If, however, an opponent has made a bet then a player 
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can call the bet by adding to the pot the exact value of the current bet. By 

contributing their own money to the pot they are able to stay in the 

current hand. 

 

Bet/Raise:  A player can add their own money to the pot over and above what is 

needed to stay in the current round. If the player is able to check, but they 

decide to add money to the pot this is called a bet. If a player is facing a 

bet from an opponent, but instead of deciding to just call the bet they 

decide to add more money to the pot, this is called a raise. 

1.3.2 5-Card Draw 

In the past the most popular poker variation was 5-card draw. In 5-card draw 

money enters the pot by way of each player’s ante, i.e. a forced bet by each player 

before any cards are dealt. This ensures that there is something in the pot to play for. 

Players are each then dealt five hole cards. No community cards are used. A round of 

betting occurs where each player decides how they wish to play using the above betting 

decisions (fold, call, bet, etc…). After the first round of betting, players can exchange 

any number of their five cards for new cards from the un-dealt portion of the deck. After 

a final round of betting, if there are still at least two players in the hand, a showdown 

occurs where all players that are left reveal which cards they were actually holding. The 

player with the best hand wins all of the money in the pot.  

The use of no community cards in 5-card draw poker ensures that all players’ 

cards are hidden. The only information available to a player to help inform their 

decision is their opponents’ betting strategy and the number of cards they choose to 

discard. 5-card draw no longer remains the most popular poker variation. Texas hold’em 

is now by far the most popular and most played variation of the game2. It is also the 

variation used to determine the annual World Series of Poker Champion.  

1.3.3 Tournament Play 

The World Series Champion is determined via a no limit Texas hold’em 

tournament structure. In tournament play, all players begin with the exact same amount 

                                                 
2 http://en.wikipedia.org/wiki/Texas_hold_'em 
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of chips. Forced bets, known as the blinds, are imposed on two players during each 

hand. The big blind acts as the minimum bet amount a player must make to stay in a 

hand. Initial betting usually occurs as multiples of the big blind. During each round of 

play one player at the table is assigned the status of dealer. This determines the betting 

order. The player to the immediate left of the dealer is known as the small blind. This 

means that player must make a forced bet of half of the current big blind. The player to 

the left of the small blind is known as the big blind. This player must make a forced bet 

of one full big blind. These forced bets occur before any cards have been dealt and 

ensure that there is something in the pot to play for. As the tournament proceeds the 

small blind/big blind values increase. The time taken for the blinds to increase normally 

varies between about twenty minutes to two hours. For example, the blinds may 

increase as follows: 10/20, 15/30, 20/40, 30/60, 40/80, 50/100. This means that the big 

blind is initially $20 worth of chips and the small blind is $10 worth of chips. After a 

certain time period the blinds are then raised to $30 for the big blind and $15 for the 

small blind. The raising of the blinds continues until all players are knocked out of the 

tournament, except for one player who holds all of the chips. This player is the winner 

of the tournament. 

1.3.4 Ring Games 

Poker can also be played as a ring game (or a cash game). Ring games differ 

from tournaments in a few areas. Firstly, in ring games players gamble with real money 

in the form of chips. Players can play with any amount of money up to a specified limit. 

Another difference is that the blinds do not increase. These are fixed, normally at a 

value much lower than a players chip stack (the amount the player has to play with). 

Ring games can be played as limit or no limit games. A ring game is normally composed 

of 8 – 10 players. Players can leave the game at any time with their winnings (or losses) 

and they can continue to play as long as they can pay the blinds. All results obtained for 

this thesis are for limit, ring games. 

1.3.5 Texas Hold’em 

In the game of Texas hold’em players are dealt two hole cards and five 

community cards are used in total. This strikes the right balance in terms of information 

availability (Harrington and Robertie 2004) and offers opportunities for better strategic 
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play than other poker variations allow for. Texas hold’em also offers a better skill-to-

luck ratio than is offered by other forms of poker. An expert hold ‘em player has more 

of an advantage because the best hand holds up more often than in any other poker 

variation (Sklansky and Malmuth 1994). Play in hold ‘em proceeds in the following four 

stages: preflop, flop, turn and the river. These are described below: 

 

Preflop: The game of Texas hold’em begins with each player being dealt two hole 

cards which only they can see. The player to the immediate left of the 

big blind is the first player to act. Once a player has made their decision 

play continues in a clockwise fashion round the table. If a player, who 

has not made a forced bet, wishes to play then they must pay at least the 

big blind value into the pot. The small blind and big blind only have to 

match the current bet value to stay in the game. As long as there are at 

least two players left then play continues to the next stage. During any 

stage of the game if all players, except one, fold their hands then the 

player who did not fold his/her hand wins the pot and the hand is over. 

Flop: Once the preflop betting has completed three community cards are dealt. 

Players use their hole cards along with the community cards to make 

their best hand. Another round of betting occurs. During this round and 

all future rounds the small blind player is the first to act (if the small 

blind player is no longer in the hand then the first active player to the left 

of the small blind becomes the first to act). The player classified as 

dealer is always the last to act (once again, if the dealer is no longer in 

the hand the first active player to the right of the dealer becomes the last 

player to act). As long as there are at least two players left then play 

continues to the next stage. 

Turn: The turn involves the drawing of one more community card. Once again 

players use any combination of their hole cards and the community cards 

to make their best hand. Another round of betting occurs and as long as 

there are at least two players left then play continues to the next stage. 

River: During the river the final community card is dealt proceeded by a final 

round of betting. If at least two players are still active in the hand a 

showdown occurs in which both players reveal their hole cards and the 
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player with the highest ranking hand wins the entire pot (if both players 

hold hands of the same value then the pot is split between both players).  

1.4 Case-Based Reasoning 

1.4.1 The CBR Cycle 

Case-based reasoning is an AI methodology which stores past problems and 

solutions and uses these to handle novel situations (Riesbeck and Schank 1989). Past 

cases are stored in a case-base and when a new problem is encountered the most similar 

cases are retrieved and evaluated. Case-based reasoning is a cyclical process and is 

typically composed of the six-REs (Watson 2003). 

 

1. REtrieve the most similar case(s). 

2. REuse the case(s) to attempt to solve the problem. 

3. REvise the proposed solution if necessary. 

4. REview the proposed solution to determine whether it is worth retaining. 

5. REtain the new solution (if need be) as part of a new case. 

6. REfine the case-base over time. 

 

 This process is illustrated pictorially in Figure 1.1. 

 

 7



 

Figure 1.1: The CBR-cycle. Image sourced from (Watson, 2003). 
 

1.4.2 Illustrative Example 

Case-based reasoning is probably best explained using an example. The scene 

for this example is an online poker server where players can play poker for real money 

against opponents from all around the world. Imagine Jimmy is an average online poker 

player who specialises in heads-up Texas hold’em tournaments. Heads-up tournaments 

involve two players who begin with even amounts of chips and play until one player 

holds all the chips and the other player holds none. Before the tournament begins both 

players pay a fee to enter the tournament. Jimmy normally pays $10 to enter into a 

tournament. The player with all the chips at the end of the match is the winner and they 

are rewarded $20 (their original $10 to enter the tournament plus their opponent’s $10). 

On the online poker server records are kept for each player specifying how long 

they have been playing for and how many heads-up games they have won. Assume 

Jimmy wishes to use this information to establish whether playing a particular opponent 

will be profitable or not. To do so Jimmy decides to record this information before 

playing a match along with the outcome of the match. Figure 1.2 shows Jimmy’s 
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records after a few months of play. The black dots are games that Jimmy eventually won 

and the yellow dots are games Jimmy lost. 

 

 

Figure 1.2: Jimmy’s opponent data. The black dots indicate games Jimmy won, whereas the 
yellow dots are games that he lost. 

 
 

Now, before Jimmy decides to play a particular opponent in a game of heads-up 

poker he first finds out how long that opponent has been playing for and how many 

games the opponent has won and he plots this information on his graph. In Figure 1.3 

this opponent is represented as the blue square. Once Jimmy has plotted the information 

on his graph he needs to decide whether or not to challenge this opponent. To do so 

Jimmy compares how close this opponent’s attributes are to previous opponents Jimmy 

has played against. If these values are similar to opponents that Jimmy played in the past 

and won against then Jimmy decides to challenge the opponent, however if they are 

more similar to opponents that Jimmy lost against in the past then Jimmy decides to 

keep his $10 instead. In this example Jimmy’s opponent is closer in proximity to players 

that Jimmy has won against in the past, so Jimmy decides to challenge the opponent. 
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Figure 1.3: Jimmy’s opponent data. The blue square represents an opponent Jimmy has not 
played before. 

 
 
 

The above example, while simplistic, illustrates the idea of using past 

experiences and their solutions to make decisions about novel situations. Each previous 

experience is stored as a case in the case-base and each case consists of a number of 

attributes with associated values and the final solution. In the above example, the 

attributes that made up each case was: 

  

1) the opponent’s experience (days, weeks, months… playing on the server) 

and,  

2) the amount of games they had won.  

 

These attributes are known as indexed attributes, i.e. their values are used to find 

similar cases in the case-base. However, a case can also be composed of other non-

indexed attributes which simply record useful information about the case. In this 

example a non-indexed attribute may be the opponent’s name. The solution for each 

case was whether Jimmy had won or lost the match. Case-based reasoning assumes that 

similar problems have similar solutions (Leake 1996). This is represented pictorially in 

Figure 1.4. 
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Figure 1.4: Similar problems have similar solutions. Image sourced from (Leake 1996). 
 

1.4.3 Case Retrieval 

There are two common methods for the retrieval of similar cases from the case-

base. One involves using the k-nearest neighbour algorithm and the other inductive 

retrieval. 

1.4.3.1 K-Nearest Neighbour 

The k-nearest neighbour algorithm involves positioning a target case (T) in an n-

dimensional search space of source cases (S). Each dimension in the space records the 

value for one of the indexed attributes which makes up the case. Similarity between the 

target and source cases individual attributes is calculated using a distance metric. For 

example, the absolute difference between two numeric attributes |Ti - Si | where i refers 

to the specific attribute in the case. 
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The target case must be compared to every case in the case-base and similarity 

computed for each attribute in the case. Global similarity between two cases is 

computed as follows: 

 

 Similarity(T, S) = ∑  (1.1)

  

=

×
n

i
iii wSTf

1
),(

Here, f refers to a similarity function, i refers to each individual attribute in the 

case, n refers to the number of cases in the case-base and wi refers to a weighting for 

attribute i to indicate its importance in the similarity measure.  

The above equation simply states that global similarity is the sum of the local 

similarities between attributes. Similarity values are often normalised to fall in the range 

of 0 to 1, where 0 refers to least similarity and 1 refers to an exact match. 

Of the n cases in the case-base, k cases with the highest similarity are retrieved. 

1.4.3.2 Inductive Retrieval 

Inductive retrieval is another method which has been used for case retrieval. 

Instead of summing similarity between separate attributes inductive retrieval works by 

examining cases in the case-base and building a decision tree. The ID3 induction 

algorithm is generally used to build the tree. The attributes that make up the case are 

examined and the information gain heuristic is used to order the attributes position in 

the decision tree. Attributes which do a good job of partitioning cases in the case-base 

are favored and are selected earlier, resulting in placing their nodes higher in the tree. 

Inductive retrieval has not been used in this thesis and is merely mentioned for 

completeness. For a more in-depth discussion of inductive retrieval and ID3 see 

(Watson 1997) or (Mitchell 1997). 
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1.5 Research Goals / Thesis Contributions 

The work completed in this thesis has focused solely on the area of limit Texas 

Hold’em. Particular interest has been given for making betting decisions at a full poker 

table, i.e. one consisting of approximately 8 – 10 players. Successful strategies differ 

markedly at a full table compared to games with fewer players e.g. heads-up - where 

there are only two players in total. 

A major goal of the research was to investigate the application of case-based 

reasoning tools and techniques to make betting decisions for the game of Texas hold’em 

and the quality of performance that was possible using this approach. This required the 

design and development of appropriate case-representations for encoding poker 

knowledge, investigating appropriate case comparison methods and extensive 

performance testing. By investigating the above problems it was intended to add to and 

improve upon the modest CBR related approaches to the game of poker that were found 

in the literature. 

A case-based poker player, nicknamed Casper (CASe-based Poker playER), was 

successfully developed and tested. Casper was shown to be able to record games from 

strong players and then reuse these to obtain a similar performance. This bypassed the 

need for any initial, intensive knowledge engineering effort required of other poker-

bots. 

The rest of this thesis proceeds as follows: 

 

• Chapter 2 discusses past research related to AI and games. Historic and 

recent approaches to the game of poker are extensively discussed and 

examined. 

• Chapter 3 details the design and development decisions made during the 

construction of the Casper system. 

• Chapter 4 describes various attempts at improving the performance of the 

system through the use of evolutionary algorithms. 

• Chapter 5 summarises all results obtained for the Casper system.  

• Chapter 6 discuses conclusions and possible future work.   
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Chapter 2 
 
Related Work 
 

 

Games provide a well suited domain for AI research. This is due to the fact that 

a game is usually composed of several well defined rules which players must adhere to. 

For a large majority of games the rules imposed are quite simple, yet the game play 

itself involves a large number of very complex strategies. This is especially true of 

games such as chess and checkers which offer opportunities to make very sophisticated 

and intricate plays. This statement is also true of the game of Texas hold’em and is 

nicely summed up by a popular quote coined by Mike Sexton which states “Poker takes 

a minute to learn and a lifetime to master”3. Another reason why games offer a 

beneficial environment for AI research is the fact that goals and objectives of the game 

are clearly defined. This is advantageous to research as a performance metric is 

implicitly embedded in the game. Success can easily be measured by factors such as the 

amount of games won, the ability to beat certain opponents or, as in the game of poker, 

the amount of money won. 

2.1 Games and AI 

2.1.1 Chess 

 
Up until recently AI research has mainly focused on games such as chess and 

checkers. Successes like Deep Thought, Deep Blue and Chinook are usually the first to 

come to mind when contemplating AI and games. The chess automaton, Deep Thought, 

evolved through work started by Hsu in 1985. It was the first machine to achieve 

Grandmaster level performance over 25 consecutive rated games in 1988. For this 

achievement it won the second Fredkin Intermediate Prize (Hsu, et al. 1995). The next 

                                                 
3 http://www.pokerlistings.com/poker-beginner-guide 

 14



year in October 1989 saw the first exhibition match between Deep Thought and Gary 

Kasparov, the then World Chess Champion. Kasparov won the match-up. Deep 

Thought’s successor, Deep Thought 2, was completed in 1991 and had reached close to 

Super Grandmaster strength by 1995 (Hsu, et al. 1995). Deep Thought 2 was effectively 

a prototype for IBM’s Deep Blue computer chess system. Deep Blue 1 played 6 games 

against Gary Kasparov in February of 1996. Once again Kasparov was the victor. The 

final score being 4-2. After this loss to Kasparov development of Deep Blue 2 

commenced. Various improvements were made to Deep Blue 1. The evaluation 

function, i.e. the weighted sum of features which indicates the strength of a particular 

board, was significantly improved. Deep Blue 2 now used an evaluation function which 

consisted of 8000 individual features. The search speed was improved to on average 250 

million positions per second (Campbell, et al. 2002) and the selective search aspect of 

the system, which meant that resources were dedicated to search interesting lines of play 

and dead ends in play were quickly abandoned, also underwent various modifications 

and improvements. The result of these efforts saw Deep Blue 2 defeat Garry Kasparov 

in 1997 by a score of 3.5 – 2.5. For the victory Deep Blue 2 was awarded the Fredkin 

prize. 

A case-based reasoning approach to chess was conducted by (Sinclair 1998). 

Sinclair used a collection of 16,728 chess games played by grandmasters with varying 

styles of play. The database of chess games was then analysed using a multivariate 

technique known as principal component analysis to build a case-base for each of the 

board positions and the corresponding move made was recorded. Future board positions 

encountered are matched against the case-base and the most similar cases retrieved. 

Sinclair reported that when the similarity measure is high the quality of the solutions 

returned is very good, but recall is low, whereas if the degree of similarity was reduced 

the quality of returned solutions is lowered, but recall improves (Sinclair 1998). 

2.1.2 Checkers 

 
The main contributor to the success of chess programs such as Deep Blue was 

the use of brute-force search techniques along with improvements to hardware 

processing speeds. A lot of the same techniques that were used for the game of chess 

have also been successful when applied to checkers. Checkers is less strategically 

complex than chess. In checkers there are only two types of pieces to play with, while in 
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chess there are 6. There is also a reduction in the amount of legal squares on the board. 

In checkers there are 32 legal squares as opposed to twice that amount in chess. These 

simplifications can actually be more beneficial when it comes to AI research (Schaeffer, 

et al. 1992). Many of the same research questions are still being addressed as in chess, 

but without the undue complexity. In August 1990, a checkers program called Chinook 

competed in the U.S. National Open. Work on Chinook had begun in June 1989 at the 

University of Alberta (Schaeffer, et al. 1991). Chinook ended up coming second in the 

National Open, after the then World Champion, Dr. Marion Tinsley. By coming second 

to Dr. Tinsley Chinook had earned the right to challenge him in a 40 game match for the 

World Championship title. Unfortunately, the American Checker Federation (A.C.F) 

and English Draughts Association (E.D.A) refused to sanction the match on the grounds 

that they did not want a computer vying for a human title. Instead a new “Man-

Machine” World Championship was created. Chinook commenced playing Tinsley in 

August 1992 - the final outcome saw Tinsley as the victor winning four of the matches, 

losing two and drawing 33 matches (Schaeffer, et al. 1996). Two years later Chinook 

was set to challenge Dr. Tinsley again. Chinook had undergone significant 

improvements in the two years, including additions to the endgame database and 

improvements to the evaluation function. The first 6 matches all resulted in draws. The 

seventh match was never to be played. Unfortunately, due to health reasons, Dr. Tinsley 

resigned the match and Chinook became the Man-Machine World Champion by forfeit. 

As with Deep Blue in chess, Chinook’s success was related to its deep search 

capabilities as well as a strong evaluation function. Chinook also employed use of an 

end-game database which was able to supply perfect information for all board positions 

for 6 pieces or less remaining. At the time of writing this thesis Chinook had extended 

the endgame databases to provide perfect information for all checker positions involving 

8 or fewer pieces on the board. 

A different approach to the game of checkers which is noteworthy is the work of 

Fogel (2000). Fogel’s approach consisted of evolving neural networks to play the game 

of checkers. Initially a set of random neural networks competed against each other for 

survival. The only human knowledge that was provided to the networks was the piece 

differential, i.e. the difference between the number of one player’s pieces versus the 

other player’s pieces. After a certain number of games were completed the networks 

were given a number associated with how well they were playing. The best networks 

were kept and offspring created from them. After 250 such generations the best evolved 
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neural network was used as an evaluation function and combined with standard 

minimax search to play games against actual human opponents. Although Fogel’s 

program is no match for Chinook his work is impressive due to the lack of human 

expertise involved in creating an expert checkers player. 

CBR has also been applied to the game of checkers (Powell, et al. 2004). The 

result was a system called CHEBR (CHEckers case-Based Reasoner). In traditional 

case-based reasoning systems case-bases are often constructed manually, for example 

via interaction with a domain expert who can supply prototypical scenarios. CHEBR 

differs from conventional case-based reasoning in that it actually acquires knowledge in 

real-time by playing checkers, i.e. CHEBR begins with an empty case-base and adds 

cases as it plays the game. This is known as automatic case elicitation. Initially, 

CHEBR has no knowledge of the game whatsoever; this includes the difference between 

legal and illegal moves. It begins by randomly selecting moves it has not tried in the 

past until a legal move is found. Once a legal move is found CHEBR records how 

successful the move was. As the system encounters similar situations it retrieves the 

most similar successful cases from its case-base and takes the appropriate action, if the 

situation encountered does not match previously stored cases or only unsuccessful cases 

are present then the system generates a new action either randomly or by combining 

actions from other successful cases. Results indicate that extra experience (gained 

through playing many games of checkers) can compensate for a lack of predefined 

knowledge. 

2.1.3 Other Games 

 
Apart from chess and checkers there have also been attempts to create programs 

to play games such as Backgammon, Go and Bridge. Gerald Tesauro’s TD-Gammon is a 

neural network that trains itself to be an evaluation function for the game of 

backgammon by playing itself and learning from the outcome (Tesauro 1995; Tesauro 

2002). GIB, developed by Matthew L. Ginsberg, has achieved success in the game of 

Bridge (Ginsberg 1999; Ginsberg 2001). And in Othello, Michael Buro’s Logistello 

challenged and defeated the World-Champion Takeshi Murakami (Buro 1997). 
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2.2 Poker and AI 

Games such as chess, checkers and backgammon are classified as two-person, 

zero-sum games with perfect information. This means that there is one winner and one 

loser (zero-sum) and the entire state of the game is accessible by both players at any 

point in the game (perfect information), i.e. both players can look down upon the board 

and see all the information they need to make their playing decisions. These types of 

games have achieved their success through the use of fast hardware processing speeds, 

selective search, effective evaluation functions and better opening books and endgame 

databases. While these achievements are impressive, their scope is rather limited. They 

offer little insight into other areas where AI techniques may be useful.  

Games such as poker on the other hand are classified as stochastic, imperfect 

information games. The game involves elements of chance, the actual cards which are 

dealt, and hidden information in the form of other player’s hole cards (cards which only 

they can see). This ensures that players now need to make decisions with uncertain 

information present. This is still an open research question in the AI community and 

research efforts are likely to be beneficial outside the realm of poker itself. For AI to be 

useful for most real world problems, challenges that imperfect information and a 

stochastic environment offers need to be addressed. 

There have been a small number of early machine learning attempts made in the 

domain of five-card draw poker. More recent approaches to poker research can be 

classified into three broad categories: the investigation of game-theoretic optimal 

solutions, heuristic rule-based systems and simulation/enumeration-based systems. 

2.2.1 Early Poker Research 

 
Nicholas Findler is credited with the earliest attempts to apply machine learning 

principles to the game of 5-card draw poker (Billings 1995).  In the 1970s Findler 

created programs to play 5-card draw poker which used various playing strategies 

(Findler 1977). Findler’s machine players were classified as either static players, which 

did not take their opponents’ behaviour into account, or learning players, that adapted 

their style of play according to the game conditions. Findler’s analysis of these machine 

players quality of play and rate of improvement has been questioned (Billings 1995) due 
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to its subjective nature and lack of scientific rigor. Although the machine players 

developed by Findler produced weak to mediocre poker players this was not the main 

concern of the research. Rather, the game of poker was used as an environment in which 

to study theories of decision making, human behaviour and cognition in a risk-taking 

environment.  

Another early researcher who used 5-card draw as a research test-bed was 

Waterman (1970). Waterman investigated the machine learning of heuristics 

(represented as production rules) to make a betting decision given information such as 

the amount of money currently in the pot, the belief measure that an opponent could be 

susceptible to a bluff, the number of cards the opponent replaced (used in deducing 

which possible hand the opponent may hold) and a measure of how conservative the 

opponent is believed to be. Waterman reported that the use of a small set of production 

rules “produces play at roughly the same level of skill as an experienced human player” 

(Waterman 1970). 

2.2.2 Heuristic-Based Systems 

 
A heuristic/rule-based system approach to computer poker uses various pieces of 

information to inform a betting strategy. For example, information such as a player’s 

hole cards, the current community cards, the player’s current position at the table and 

the previous betting history of the hand may form part of some heuristic which dictates 

whether the player should fold, check/call or bet/raise when it is their turn to act.  

As mentioned previously, an earlier attempt at an heuristic based system was 

made by Waterman (1970) who attempted the machine learning of heuristics using the 

poker variation of five-card draw. Sklansky and Malmuth have detailed various 

heuristics for different stages of play (preflop, flop, turn and river) in the game of Texas 

hold‘em (Sklansky 1994; Sklansky and Malmuth 1994). In particular detailed guidelines 

for preflop play, given a player’s relative betting position at the table, are provided. As 

well as the grouping of various hole cards into eight separate equivalence classes 

ordered on the strength of the hand (Sklansky and Malmuth 1994).  The purpose of 

these rules, however, has been to guide human players who are looking to improve their 

game rather than the construction of a computerised expert system.  Nevertheless, a 

poker playing program that used to play on Internet Relay Chat (IRC) called r00lbot 
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developed by hobbyist Greg Wohletz used Sklansky and Malmuth’s recommendations 

to determine its preflop play (Papp 1998).  

The University of Alberta Poker Research Group’s formula based version of 

Poki uses ad hoc rules and formulas defined by a domain expert to generate a fold, 

check/call and bet/raise probability distribution which specifies a betting decision 

(Billings, et al. 2002). The distribution is represented as a probability triple whose 

components sum to 1.0. For example, given the probability triple (0.0, 0.2, 0.8) a player 

should fold 0% of the time, check/call 20% of the time and bet/raise the remaining 80% 

of the time. 

 Information such as a player’s effective hand strength (the probability that the 

player currently has the best hand or can improve to make the best hand), relative 

betting position and the model of an opponent’s play all contribute to the generation of 

the probability triple. The exact details of the expert system have not been specified 

(Billings, et al. 2002). 

Poki’s performance was tested by playing both real and machine opponents. The 

formula-based version of Poki played in both low limit and higher limit games on the 

IRC poker server. Poki was a consistent winner in the lower limit games as well as in 

the higher limit games where it faced tougher opposition (Billings, et al. 2002). 

 While expert defined rule-based systems can produce poker programs of 

reasonable quality (Billings, et al. 2002), various limitations are also present. As with 

any knowledge-based system a domain expert is required to provide the rules for the 

system. In a strategically complex game such as Texas hold’em it becomes impractical 

to write rules for all the scenarios which can occur. Moreover, given the dynamic, 

nondeterministic structure of the game any rigid rule-based system is unable to exploit 

weak opposition and is likely to be exploited by any opposition with a reasonable degree 

of strength. Finally, any additions to a rule-based system of moderate size become 

difficult to implement and test (Billings, et al. 1999). 

2.2.3 Simulation-Based Approaches 

 
A simulation-based betting strategy is analogous to selective search in perfect 

information games such as chess and checkers. Rather than expanding all nodes in the 

game-tree with equal probability, biases towards expanding certain nodes are introduced 
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in the hope of obtaining better information in less time by initially examining important 

nodes. 

 In poker a simulation-based betting strategy consists of playing out many 

scenarios from a certain point in the hand and obtaining the expected value (EV) of 

different decisions. The simulations occur when it is time for the program to make a 

betting decision. The amount of money won or lost for each betting decision is 

determined and the average of this becomes the EV for that decision. The EV of a fold 

decision is always 0 because no money can be won if the hand is folded. The EV of a 

check/call or a bet/raise decision is obtained by playing out the hand to the end using a 

certain number of trials. Each trial begins by assigning each opponent possible hole 

cards and then simulating how the opponent might play the hand.  

During the simulation it becomes necessary to make future betting decisions as 

well as predict an opponent’s betting decisions along the way. The University of Alberta 

Poker Research Group’s implementation of Loki (Billings, et al. 1999) and simulation-

based version of Poki (Billings, et al. 2002) use probability triples as the main data 

structure to handle these decisions. A probability triple (f, c, r) is generated which 

specifies how often the program and the opponent would fold, call or raise at a 

particular point in the game. The use of probability triples allows elements such as 

game-specific information, expert defined rules and knowledge of human behaviour to 

effectively be treated as a ‘black box’. These ‘messy’ elements are constrained to the 

construction of the probability triple (Billings, et al. 1999).  

Simulation based approaches have been combined with opponent modeling 

methods in both Loki and Poki (Billings, et al. 1999; Billings, et al. 2002). At the 

beginning of a simulation trial opponents need to be assigned two hole cards to inform 

their possible future actions. Rather than assigning hole cards to different opponents 

with uniform probability a weight table is maintained for each opponent which lists all 

possible two card holdings and the likelihood that those cards would have been played 

to the current stage in the game. After observing a betting action from an opponent the 

weights are updated using a probability triple generated by the current opponent model. 

The use of the weight table allows the assignment of hole cards to an opponent to be 

biased towards certain cards, rather than assuming equal probability. For example, if an 

opponent has consistently been raising in a hand it is more likely that the opponent has a 

good hand rather than a random one.  
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Results for the simulation based versions of Poki and Loki were somewhat 

mixed (Billings, et al. 2002). While they performed better than their formula-based 

counterparts in the lower level games on the IRC poker server, they were only able to 

break even on the more advanced level games whereas the formula-based versions 

would routinely win. 

2.2.4 Game Theory and Poker 

 
The game of Texas hold’em consists of multiple players, with conflicting goals, 

making decisions given the information they have access to. Game theory provides the 

tools to model and analyse situations such as this and allows “rational” strategies to be 

developed for different players (Rasmusen, 2001). 

There have been various manual applications of game theory to simplified 

versions of poker (Kuhn 1950; Nash and Shapley 1950). While game-theoretic 

approaches are manageable for games with perfect information, the introduction of 

imperfect information greatly increases the computational costs and the complexity of 

the problem. A consequence of this was that game-theoretic analysis could only be 

performed manually on over-simplified versions of poker and as such any results 

obtained from studying these simple versions of the game do not transfer well to full-

scale poker (Koller and Pfeffer 1997). 

Koller and Pfeffer have investigated the application of game theory to large 

imperfect information games, such as poker, in their Gala system (Koller and Pfeffer 

1997). The Gala system is made up of two distinct sections. The first section involves 

the ability to describe a game using a special language to specify the rules that make up 

the game. Once the game has been specified a tree is constructed which is very similar 

to the “standard” AI game tree in which states are represented as nodes in the tree and 

an agents possible decisions are represented as arcs. This tree is known to game 

theorists as the extensive form representation of the game. The extensive form 

representation extends the standard game tree by adding information about a player’s 

information state at particular nodes (Koller and Pfeffer 1997). 

The second component of the Gala system performs analysis on the game tree 

and finds randomised optimal strategies for the game. Randomised strategies involve 

some proportion of random decisions being made, for example how often to bluff, with 

random cards, in a game of poker. Randomised strategies are employed by the Gala 
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system for games with imperfect information as any deterministic strategy is liable to be 

exposed and exploited. An optimal strategy is one in which a player cannot do any 

better by changing his or her strategy provided that their opponents are also using an 

optimal strategy, moreover a player can reveal their optimal strategy yet not be 

vulnerable to exploitation by their opponent (Koller and Pfeffer 1997). These concepts 

have been illustrated using the game of rock-paper-scissors (Billings, et al. 2002; 

Davidson 2002; Billings, et al. 2003). 

The game of rock-paper-scissors (or RoShamBo) is played by two people. Each 

person simultaneously chooses rock, paper or scissors. Players make their choices 

known to each other at the same time, usually via hand signals. The winner of the game 

is determined as follows: rock beats scissors, scissors beats paper and paper beats rock. 

So as an example if player 1 chooses rock and player 2 chooses scissors then player 1 is 

the winner of that round. If both players choose the same item then the outcome is a 

draw. The skill in the game of rock-paper-scissors comes from a player knowing their 

opponent so well that they are able to predict which option their opponent will choose 

i.e. they know their opponents’ strategy. Now, in the game of rock-paper-scissors there 

exists an optimal strategy which says to randomly pick rock, paper or scissors with 

equal probability. If a weak player deviates from this strategy a strong player is liable to 

outplay the weak player by finding out and exploiting their sub-optimal strategy. 

However, if the weak player just uses the optimal strategy and chooses rock, paper or 

scissors, each with a probability of
3
1 , then the strong player no longer can exploit the 

weak player by predicting what they will choose. By choosing the optimal strategy the 

weak player ensures a breakeven result rather than a losing result. In fact, the weak 

player can even tell the strong player their strategy and still not do any worse. 

The Gala system was applied to a simplified version of two-player poker. An 

eight card deck was used in which the lowest card was a 6 and the highest card was a 

King. Each player is dealt one card and has to make a forced bet of one dollar. Each 

player also has one extra dollar with which to bet. Players then have the option to check 

and not wager their remaining dollar or to bet their remaining dollar or to fold their 

hand. If either player folds the other player automatically wins the forced bets. The 

game consists of up to three rounds. In the first round player 1 decides whether they 

wish to check or bet. In round two player 2 now makes their decision. If player 1 

checked in the first round then player 2 now has the option of either checking or betting. 
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If player 1 bet in the first round player 2 can now either fold or call. The third round 

only takes place if player 1 checked in the first round and player 2 bet in the second, 

now player 1 can decide to fold or to also bet. Once betting is complete the cards are 

revealed and the player with the highest card wins the pot. The rules for this simplified 

game of poker were input into the Gala system and the game tree was generated and an 

optimal strategy derived. The results of the analysis show that bluffing is game-

theoretically optimal in poker. While this simplified 8 card poker variation was able to 

be solved using the Gala system the authors note that they are nowhere near being able 

to solve full-scale poker due to the size of the game trees generated (Koller and Pfeffer 

1997). 

 The University of Alberta Computer Poker Research Group have attempted to 

apply game-theoretic analysis to full-scale 2-player poker (Billings, et al. 2003). The 

poker variation that they investigated was limit Texas hold’em. The group attempts to 

overcome the computational complexities associated with full-scale poker by using 

various abstraction techniques to reduce the search space while still retaining the key 

properties and structure of Texas hold’em. By using abstractions such as limiting the 

number of bets a player is allowed per round, eliminating some betting rounds (for 

instance the river) and the grouping of hands into equivalence classes the group are able 

to determine “pseudo-optimal” strategies. The result is a class of programs known as 

PsOpti (PsOpti1, PsOpti2 …) which are “able to defeat strong human players and be 

competitive against world-class opponents” (Billings, et al. 2003).  

The outcome of applying game-theoretic solutions to games produces optimal 

strategies, rather than maximal strategies. An optimal strategy assumes an opponent will 

play optimally. It gives no consideration to exploiting any weaknesses of an opponent 

and is only concerned with not losing rather than winning. A maximal strategy, on the 

other hand, will try to win by exploiting sub-optimal play to maximise gains. This 

implies that while game-theoretic approaches may not lose against very strong 

opponents, they also may not win against weak opponents. Consider once again the 

example of rock-paper-scissors. Imagine a very weak player whose strategy is to only 

ever play rock. A maximal strategy will eventually detect this weakness and play paper 

ensuring a win every time. Whereas, an optimal strategy will not consider the opponents 

play and will continue to play rock, paper or scissors with equal probability, ensuring a 

breakeven result. To overcome these constraints opponent modeling needs to be 

addressed (Billings, et al. 2003). 
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2.2.5 Case-Based Reasoning and Poker 

Relatively few attempts to apply the principles and techniques of CBR to the 

game of poker have been undertaken. A case-based learner for Texas Hold’em, called 

Casey, was constructed by (Sandven and Tessem 2006). Casey recorded information 

from poker hands and used these to make future betting decisions. Each case was made 

up of several attributes including hand strength, relative position, number of opponents 

and number of bets to call. The solution offered by a case is a strategy which consists of 

an action to be taken and a follow up response if applicable. For example a strategy may 

consist of one action such as fold or multiple actions such as checking to an opponent 

and raising if the opponent bets (this is known as a check-raise in poker and is 

considered to be a sign of strong hand strength).  

Initially, Casey began with an empty case-base and therefore had to begin by 

employing random strategies (i.e. making random decisions) to build up the case-base. 

The decisions made by Casey were then evaluated by the outcome of the hand and this 

was recorded in the case-base. As play proceeded more similar scenarios where 

encountered and the need for random strategies decreased. 

Sandven and Tessem tested Casey by playing in poker games of 4, 6 and 8 

players through the University of Alberta Poker Research Group’s commercial product 

known as Poker Academy4. Casey’s opponents were instances of another poker-bot 

known as RuleBot. RuleBot, as its name suggests, is a rule-based system which was 

provided with the Poker Academy software. As Casey begins by never folding and 

playing randomly to generate a sufficient case-base the initial results are obviously quite 

poor. As more cases are added to the case-base slight improvement is shown in the 

results. Sandven and Tessem report that Casey plays on a par with RuleBot in 4-handed 

play. 

The Casper system, which is the focus of this thesis, improves upon Casey’s 

results (Rubin and Watson 2007)5. No other systems that used case-based reasoning to 

make betting decisions at the poker table could be found in the literature. 

An attempt to apply CBR specifically to the area of opponent modeling was 

made by (Salim and Rohwer 2005). Opponent modeling attempts to predict the hand 

strength of an opponent given how that opponent has been observed playing in the past. 

                                                 
4 http://www.poker-academy.com 
5 See Appendix A for a full re-print of this paper 
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In poker it is imperative to know how ones opponents play, for instance are they 

aggressive or conservative players? Does one opponent bluff too much? This 

information is used to exploit weak opposition and to reduce the chances of being 

exploited by stronger opposition. This insures that accurate opponent modeling is 

critical to the success of any computerised poker player (Billings, et al. 1998; Billings, 

et al. 1999; Davidson 2002). CBR seems to be an obvious candidate to handle this 

aspect of the game, i.e. by recording cases of how a particular opponent has played in 

the past and using the most similar cases in the case-base when faced with a new 

decision. Salim and Rohwer attempted to use CBR to predict an opponent’s future play 

given how they played their last 100 hands. Each opponent had their own individual 

case-base which recorded their average hand strength and variance. The results show 

that the predictions made using CBR did not achieve great success and were inferior to 

results obtained by simply recording long-term average statistics for opponents (Salim 

and Rohwer 2005).  
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Chapter 3 

CASPER: Developing a Case-Based 
Poker Player 

 

For this thesis a poker player was developed that used the CBR methodology. 

The design and implementation of this CASe-based Poker playER, or CASPER, 

involved the identification and experimentation of various aspects such as case 

representation; feature usage, significance and similarity; and case retrieval. The design 

decisions employed are detailed in this chapter. 

3.1 Case-base Construction 

Casper uses the CBR methodology to make a betting decision. This means that 

when it is Casper’s turn to act it evaluates the current state of the game and then 

consults its case-base (i.e. its knowledge of past poker experiences) to try and find 

similar scenarios which may have been encountered. These past experiences dictate how 

Casper should play the hand. Initially, Casper’s case-base was constructed by analysing 

approximately 7000 poker hands played between two types of poker bots developed by 

the Computer Poker Research Group at the University of Alberta6. The two bots used 

were the well known Pokibot and the simulation based Simbot. Both Pokibot and 

Simbot were the result of an intensive knowledge engineering process. Both bots have 

proven to be profitable against human competition in the past (Davidson 2002) so it is 

believed that the data obtained is of greater quality then it might be from other sources, 

such as free money games on the internet composed of real players. Every decision 

made during each hand was recorded as one case in Casper’s case-base. Casper then 

reuses these recorded instances to make decisions at the poker table and therefore 

bypasses the intensive knowledge engineering effort required of other poker-bots.  

                                                 
6 http://www.cs.ualberta.ca/~games/poker/ 
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For each stage of the game (preflop, flop, turn and river) a separate case-base is 

used. Table 3.1 records how many cases were collected for each of the separate case-

bases. This became known as the first version of Casper, or Casper01. After observing 

preliminary results it was decided to improve Casper01 by using a larger case-base. 

Another 13,000 poker hands were played and recorded as cases in Casper02’s case-base. 

Table 3.2 records the total number of cases recorded for each of Casper02’s separate 

case-bases. 

Stage Total cases 

Preflop 28,224 

Flop 9,998 

Turn 7,023 

River 5,691 

 
Table 3.1: Casebase totals for Casper version 1. 

 
 

Stage Total cases 

Preflop 167,540 

Flop 50,948 

Turn 34,634 

River 27,507 

 
Table 3.2: Casebase totals for Casper version 2. 

 

As can be seen above Casper02 uses substantially more cases then Casper01 to make a 

betting decision. 

3.2 Case Representation 

The features that make up each case differ slightly depending on the current 

stage. The features used for each stage are described below.  
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3.2.1 Preflop Cases 

 
Feature: Type: Range: Explanation: 

Case number int 1 - 150000 A unique number identifying the case 

Game number int 1 - 20000 The game number from which this case 
was derived 

Player name String {a – z} The name of the player who made the 
decision 

Hole cards7 String "27o" - 
"AAo" 

One of 169 different groups of hole 
cards that a player could be dealt. Made 
up of each card’s rank and whether they 
are the same suit ‘s’ or offsuit ‘o’. 

Absolute position int 1 - 10 
What order the player acts. 1 represents 
the small blind, 2 the big blind and 10 is 
the button. 

Number of players int 1 - 10 Number of players that were dealt 
cards. 

Relative position double 0.0 - 1.0 
What order the player acts relative to 
other players at the table. 0.0 means the 
small blind and 1.0 is the button. 

Players in current 
hand int 0 - 9 

The number of players that are currently 
in the hand, i.e. players that have called 
or raised. 

Players yet to act int 0 - 9 The number of players that still need to 
make a future betting decision. 

Small bets 
committed double 0.0 - 5.0 A multiple of the small bets the player 

has committed to the pot. 

Small bets to call double 0.0 - 5.0 
A multiple of the small bets the player 
has to commit to the pot to stay in the 
hand. 

Pot Odds double 0.0 - 0.5 (Bets to call) / (Bets to Call + Pot total), 
i.e. is a risk reward measure. 

Hand ranking int 1 - 169 

A number indicating the rank of the 
players hole cards. 1 indicates AAo (the 
best preflop hand) whereas 169 
indicates 27o (the worst preflop hand)  

Action char {f, k, c, r} 
A character representing the decision 
which was made. f = fold, k = check,    
c = call, r = raise. 

Table 3.3: Representation of a preflop case, made up of 5 unindexed features, 8 indexed 
features and 1 outcome. 

 
 

                                                 
7 All 169 preflop hand groupings are listed and ranked in Appendix B.  
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Each preflop case is made up of five unindexed features, eight indexed features 

and one outcome. Table 3.3 lists each of these features. The first five features in table 

3.3 are unindexed, i.e. they are not used in the retrieval process, but merely provide 

important contextual information. The eight features that follow are indexed features 

and are believed to be predictive of a case’s outcome.  

The above indexed features were chosen by the author to represent a preflop 

case because they are believed to capture important information needed to make a 

preflop betting decision. Because all of the above indexed features are quantitative this 

becomes advantageous when computing case similarity and during case retrieval. 

3.2.2 Postflop Cases 

Once again the first 5 features in the postflop cases are unindexed and therefore 

they are not used in the retrieval process. Cases for the flop and the turn consist of 12 

indexed features and cases for the river consist of 10 indexed features. Each case has 

one outcome. Table 3.4 lists all features and their range of values.  

As with the preflop case, these postflop features were chosen by the author 

because they are believed to provide important information that must be assessed before 

making a betting decision postflop. Once again, all indexed features are quantitative and 

are easily comparable. 

During casebase construction values were calculated and assigned to all case 

features for all preflop, flop, turn and river cases. This was achieved by recording 

instances of games played between both Pokibot and Simbot and then extracting and 

calculating the appropriate information from these instances. 
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Features: Type: Range: Explanation: 
Case number int 1 - 50000 A unique number identifying the case. 

Game number int 1 - 20000 The game number from which this case was derived. 

Player name String {a – z} The name of the player who made the decision. 

Hole cards String "27o" - "AAo" One of 169 different groups of hole cards that a player 
could be dealt. 

Board cards String "{2 - A}, 
{s,c,d,h}" 

The set of community cards which have currently been 
dealt. Each card is described by its rank {2 – A} and 
suit {s,c,d,h} where s = spades, c = clubs,                    
d = diamonds and h = hearts. 

Number of 
players int 1 – 10 Number of active players at the beginning of the round 

(flop, turn or river). 

Relative 
position double 0.0 - 1.0 

What order the player acts relative to other players at 
the table. 0.0 means the player is first to act in the 
round, 1.0 means the player is last to act. 

Previous round 
total bets 

int 0 - 5 How many bets or raises occurred during the previous 
round of betting. 

Players in 
current hand 

int 0 - 9 The number of players that are currently in the hand, 
i.e. players that have checked, bet, called or raised. 

Players yet 
to act 

int 0 - 9 The number of players that still need to make a future 
betting decision. 

Bets committed double 0.0 - 5.0 
A multiple of the current bet size the player has 
committed to the pot. Small bets are used during the 
flop and big bets are used during the turn and river. 

Bets to call double 0.0 - 5.0 A multiple of the current bet size the player has to 
commit to the pot to stay in the hand.  

Small bets 
in pot 

double 0.0 - 300.0 The total amount in the pot divided by the value of the 
small bet size. 

Pot Odds double 0.0 - 0.5 (Bets to call) / (Bets to Call + Pot total), i.e. is a risk 
reward measure.  

Immediate hand 
strength (IHS) double 0.0 - 1.0 

A numerical measure of the strength of a player's 
postflop hand. 0.0 represents the worst possible hand 
whereas 1.0 represents an unbeatable hand ("the 
nuts"). 

Positive 
potential 
(PPOT)8

double 0.0 - ~0.40 
A numerical measure which represents the chance that 
a player who does not currently hold the best hand will 
improve to the best hand after future cards are dealt. 

Negative 
potential 
(NPOT)8

double 0.0 - ~0.30 

A numerical measure which represents the chance that 
a player currently holding the best hand no longer 
holds the best hand after future community cards are 
dealt. 

Action char {f, k, c, b, r} 
A character representing the decision which was made. 

Table 3.4: Representation of the postflop cases. 
f = fold, k = check, c = call, b = bet, r = raise. 

                                                 
8 These features are not used for river cases because no future community cards are dealt. 
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3.3 Similarity Metrics 

Each of the above indexed case features was assigned a local similarity metric 

which computes how similar its value is to another instance. Recall that when it is time 

to make a betting decision a target case is constructed and all features are assigned 

particular values. The target case is then compared to the cases stored in the case-base, 

known as the source cases. This comparison is performed by computing the local 

similarity for each of the indexed features. The local similarity metric tells us how 

similar the target case’s feature value is to each source case’s feature value.  

In general two main similarity metrics were used to compute local similarity 

between individual features. These included the standard 1-dimensional Euclidean 

distance and an exponential decay function. The similarity metric used for all preflop 

and postflop case features are explained below. 

 

3.3.1 Number of Players (preflop only) 

Similarity for the number of players was measured by grouping different 

numbers of players into equivalence classes and assigning a similarity measure of 1.0 if 

they were assigned to the same group. Otherwise a similarity value of 0.0 was assigned 

for values in separate groups. The groups used are displayed in Table 3.5. 

 

Group Number of players 

1 8, 9, 10 

2 5, 6, 7 

3 3, 4 

4 2 

Table 3.5: Equivalent groups 
 

3.3.2 Relative position, Players in current hand, Players yet to 
act, Number of players (postflop only), Small bets in pot and 
Pot Odds  

The similarity measure for the preflop and postflop features including:  
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1) relative position, 

2) players in current hand, 

3) players yet to act, and 

4) pot odds 

as well as the postflop features: 

5) number of players, and 

6) small bets in pot, 

 

were calculated by computing the absolute difference between the target case’s feature 

value and the source case’s feature value and then dividing this difference by the 

maximum possible difference (given by the range for each feature in Table 3.3 and 3.4). 

This gives a value between 0.0 and 1.0 where 0.0 indicates an exact match and 1.0 

indicates completely different values. The inverse of this value was then taken by 

subtracting it from 1.0. This ensures exact matches now have a similarity of 1.0 and 

entirely different values have a similarity of 0.0. The following is summarised 

mathematically below: 

 

 si = ⎟
⎠

⎞
⎜
⎝

⎛ −− DIFFMAX
xx

_1 21 , (3.1) 

 

where x1 refers to the target value and x2 refers to the source case value and MAX_DIFF 

is the greatest difference in values obtained from Table 3.3 and Table 3.4. 

This metric was used because it generates a smoothly varying, continuous 

function. Figure 3.1 shows an example of how similarity values change based on the 

difference between a target case and a source case’s value for the ‘players in current 

hand’ feature. This feature records the number of players who have willingly committed 

chips to the pot during the preflop. The x-axis (Difference in value) represents |x1 – x2| 

in equation 3.1, whereas the y-axis represents the value si.  
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Figure 3.1: Similarity values for the ‘players in current hand’ feature. 

 

So for example, when the target and source case values are exactly the same then local 

similarity is calculated to be 1.0. When the target and source cases values differ by 1 

then similarity is calculated to be 0.89. 

 

3.3.3 Bets committed, Bets to Call and Previous Round Total 
Bets 

Both the preflop case-base and the postflop case-bases record how many bets 

have been committed during the round (‘bets committed’) and the minimum number of 

bets that need to be called to stay in (‘bets to call’). All postflop case-bases also record 

the total number of bets or raises that occurred during the previous betting round 

(‘previous round total bets’). During the preflop and flop stages bets are in increments of 

the small bet and during the turn and river bets are in increments of the big bet. The 

similarity metric used for ‘bets committed’, ‘bets to call’ and ‘previous round bets’ 

differed from the previously mentioned features as differences between their values 

were believed to have greater significance. For these reasons an exponential decay 

function was used to compute similarity: 
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 si = e xxk )(
21

−− , (3.2)  

 

where, x1 refers to the target value and x2 refers to the source value and k is a constant 

that controls the rate of decay. If x1 has the same value as x2 similarity is 1.0, indicating 

an exact match, whereas as the difference between x1 and x2 increases the value of si 

rapidly decreases. This is represented pictorially in figure 3.2 below. As can be seen the 

greater the exponential constant, k, the faster similarity decreases.  

 

 
Figure 3.2: Similarity values for the ‘bets committed’ feature. 

 

Figure 3.2 plots the similarity computed for the ‘bets committed’ feature using 

the exponential decay function. Once again the x-axis (Difference in value) represents 

the absolute difference between the target value and the source value, |x1 – x2| in 

equation 3.2. 

Consider an example case where a player has committed no bets to the pot yet. 

All cases in the case-base which have a value of 0 for the feature ‘bets committed’ 

would be given a local similarity measure of 1.0, whereas all cases where a player had 

already committed one bet would have a similarity of 0.368 (assuming a value of k = 1), 
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whereas if the above Euclidean distance measure from section 3.3.2 was used this would 

result in a local similarity value of 0.8. This dramatic drop in similarity is desirable as 

scenarios where a player is making their first betting decision are normally quite 

different from those encountered when a player has already contributed money to the 

pot. 

For the ‘bets committed’ and ‘previous round total bets’ features k was assigned 

the default value of 1.0, whereas ‘bets to call’ used k = 4.0. 

 

3.3.4 Hand Ranking 

The most important preflop feature is hand ranking; a numeric value assigned to 

the pair of hole cards a player has been dealt. During the preflop stage there are  = 

1326 different combinations of cards a player could be dealt, however a lot of these 

combinations are effectively equal. For example, the exact suit of a card is no longer 

important as no community cards are yet to be revealed, therefore a hand like A♥- K♥ 
can be considered equivalent to A♣-K♣ and can be classified as AKs, where s stands 

for suited (meaning the same suit). Furthermore a hand such as T♥-J♦ can be 

considered equivalent to T♥-J♠ and can be classified as TJo, where o stands for off-suit 

(meaning separate suits). This means that there are in fact only 169 distinct groups that a 

preflop hand can fall into. Each of these distinct hands can be ranked by assigning it a 

number between 1 and 169 where 1 indicates the best possible preflop hand (i.e. AAo, 

followed by KKo, QQo…) and 169 indicates the worst preflop hand (i.e. 27o). A 

complete listing of all preflop hand ranks can be found in Appendix A. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

52

These hand rankings were used in an exponentially decaying similarity metric 

given by the following formula: 

 

 si = e DIFFMAX
xxk ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
− _

21

,  (3.3) 

 

where x1 refers to the target case’s hand ranking value and x2 refers to the source case’s 

hand ranking value. Equation (3.3) only differs from equation (3.2) through the use of 

MAX_DIFF which represents the difference between the highest hand ranking value and 
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the lowest, given by 169 – 1 = 168. An exponential decay constant of k = 4 was chosen. 

These values were chosen so that cards that were close in rank did not produce a 

similarity measure that was too close.  

Initially similarity for hand ranking was computed using a Euclidean distance 

measure, however it was soon discovered that using this measure produced too high a 

similarity measure when there were differences between hole card groups. Once again a 

function was needed to ensure similarity dramatically decreased as soon as any 

difference between the target and source value occurred. This effectively represented the 

importance of giving preference to cases in the case-base that had the exact same hand 

rank value. 

3.3.5 Immediate Hand Strength, Positive Potential and Negative 
Potential 

During the preflop it is only necessary to consider 169 different rankings to get 

an idea of preflop hand strength. However, the use of community cards during and after 

the flop ensures that a lot more calculations are needed to compute postflop hand 

strength. Immediate hand strength (IHS) can be computed by calculating all the hands 

which are currently better than ours as well as all the hands which are currently worse 

and those that are equal  (Davidson, 2002). Using these values the probability of having 

the best hand against one opponent with random hole cards, i.e. IHS, can be determined. 

The algorithm for computing immediate hand strength is given in Figure 3.3. By 

assigning all combinations of possible hole cards (the initial 52 cards in the deck minus 

our two hole cards minus three community cards gives  = 1081 combinations) to 

one opponent and determining how many of these combinations we can beat, draw or 

lose to, immediate hand strength is given by the amount we can beat plus half of the 

draws divided by the total. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
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Figure 3.3: Immediate hand strength algorithm. Image sourced from (Davidson 2002). 

 
This gives the hand strength against one opponent, however if more than one 

opponent is still active in the hand the probability of holding the best hand decreases. 

Therefore, immediate hand strength when against multiple opponents is computed as 

follows: 

 

 IHS = IHSn, (3.4)  

 

where n is the number of active opponents. 

Apart from immediate hand strength it is also useful to know the probability of 

currently having a worse hand which improves to a winning hand after extra community 

cards have been dealt. This is known as positive potential or ppot (Davidson 2002). In 

contrast to positive potential there also exists negative potential, npot, which is the 

probability of currently having the best hand, but after extra community cards are dealt 

this hand is no longer the best. Figure 3.4 shows the algorithm used for computing ppot 

and npot. 
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Figure 3.4: Positive and Negative potential. Image sourced from (Davidson 2002). 

 

In the final version of Casper immediate hand strength was used in all postflop 

case-bases, and positive potential and negative potential were used as features in the 

flop and turn case-bases. However initially, experimentation was performed where both 

the flop and turn cases used effective hand strength and negative potential as indexed 

features instead. Effective hand strength combines immediate hand strength and positive 

potential into one value. Effective hand strength is calculated as follows: 

 

 EHS = IHSn + (1 – IHSn) x PPOT (3.5) 
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Equation (3.5) states that effective hand strength is given by the probability of 

having the best hand against n opponents and the probability of not having the best hand 

multiplied by the probability of that hand improving to the best hand. The use of 

effective hand strength ensures that hands will be bet aggressively even if the chance is 

high that an opponent will make a better hand with future community cards to come. 

This is desirable as it forces opponents to pay the highest price for drawing hands 

(Billings, et al. 2002). 

Similarity for both immediate and effective hand strength was measured using 

the standard 1-dimensional Euclidean distance given by equation (3.1), where 

MAX_DIFF is equal to 1.0. No noticeable differences were found using this similarity 

measure as opposed to the exponential decay function of equation (3.2). The final 

version of Casper used immediate hand strength, rather than effective hand strength as 

this appeared to improve the performance of the system.  

Similarity for PPOT and NPOT was computed using the exponential decay 

function with a value of k = 1. Once again this was done to avoid situations where 

distinct cases were treated as very similar, when in fact there may have been 

considerable differences. 

3.4 Case Retrieval 

When it is Casper’s turn to make a betting decision a target case is constructed 

by assigning each feature its required value. Once a target case has been constructed 

Casper needs to locate and retrieve the most similar cases it has stored in its case-base. 

The k-nearest neighbour algorithm is used to compute a similarity value for all cases in 

the case-base. Global similarity for all cases in the appropriate case-base is computed as 

a weighted linear combination of local similarity using the following equation: 

 

 sj = ∑∑
==

n

i
i

n

i
ii wxw

11

, (3.6) 

    

where sj refers to the similarity value calculated for case j, xi refers to the ith local 

similarity metric in the range 0.0 to 1.0 and wi is its associated weight, in the range 0 – 

100. Initially, all weights were hand-picked. A default value of 5 was used for most 
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features, while features believed to hold more importance were assigned much higher 

values in the approximate range 50 – 80. The more salient features included items such 

as ‘hand strength’ and ‘positive and negative potential’. All hand-picked weights for the 

preflop, flop, turn and river case-bases are listed in Chapter 4 of this thesis. Later, an 

attempt to derive optimal feature weights was performed using evolutionary algorithms 

(also described in Chapter 4). 

After computing a similarity value for each case in the case-base a descending 

quick sort of all cases is performed. The actions of all cases which exceed a similarity 

threshold of 97% are recorded. Each action is summed and then divided by the total 

number of similar cases which results in the construction of a probability triple (f, c, r) 

which gives the probability of folding, checking/calling or betting/raising in the current 

situation. If no cases exceed the similarity threshold then the top 20 similar cases are 

used. As an example, assume Casper looks at its hole cards and sees A♥-A♠, after a 

search of its preflop case-base Casper locates 30 cases that exceed the similarity 

threshold of 97%. Of the 30 cases retrieved none record a fold action, 3 cases record a 

check/call action and the remaining 27 cases all dictate a bet/raise action. Using the 

above information the following probability triple is generated: (0.0, 0.1, 0.9). This 

indicates that given the current situation Casper should never fold this hand, it should 

just call the bet 10% of the time (note, the option to check is not available here) and it 

should bet/raise 90% of the time.  

A betting decision is then probabilistically made using the probability triple 

which was generated. For example, consider another probability triple, (0.25, 0.25, 

0.50). A betting decision is made probabilistically by generating a random number 

between 0.0 and 1.0. For the triple above, if this random number is less than 0.25 then 

the decision to fold is taken. If however, the random number is between 0.25 and 0.50 

Casper will check, if the option is available, otherwise it will call the minimum bet. 

Finally, if the random number generated was above 0.50 Casper will bet, if no other 

players have bet, otherwise it will raise the current bet. Figure 3.5 pictorially represents 

generating the random number 0.9, which results in the bet/raise action. 

 

 41



 
Figure 3.5: Representation of a probability triple. A bet/raise decision is being made. 

 

The use of a probability triple for decision making means that given similar 

scenarios Casper will not always make the same betting decision. This has both positive 

and negative consequences. On the positive side it makes Casper’s play less predictable 

and hence harder for its opponents to adapt to. On the other hand it may result in Casper 

making an ‘incorrect’ betting decision some of the time. As an example consider a 

situation where the correct decision is to bet/raise. Imagine 10 cases are retrieved that 

exceed the similarity threshold. If nine of these cases dictate a bet/raise decision and one 

indicates a fold action then there is a 10% chance that Casper will fold and make an 

incorrect decision. However, due to the nature of poker a ‘correct decision’ is often only 

known once all hidden information has been revealed.  

A further issue is encountered when no cases in the casebase exceed the 

similarity threshold. This ensures that Casper now needs to make betting decisions 

based on less similar situations.  

3.5 Implementation 

Casper was designed to challenge several different types of opponents, including 

computer opponents such as the University of Alberta bots (Pokibot and Simbot) as well 

as real opponents on the internet. Casper was also required to challenge itself during 

self-play experiments (see Chapter 4). This required separate implementations of Casper 

to be performed. 

3.5.1 Casebase Construction 

Casper’s casebase was constructed using the Java programming language to 

parse text files which contained instances of poker games played between Pokibot and 

 42



Simbot. All relevant feature information was then calculated and stored as cases in text 

files.  

3.5.2 Computer Opponents 

Initially, Casper was implemented in Java using the commercially available 

product Poker Academy Pro 2.59 and the Meerkat API which provides the appropriate 

libraries to program poker-bots. Poker Academy Pro includes the University of Alberta 

bots as well as other computer opponents who Casper was able to challenge. All testing 

against computer opponents was performed using Poker Academy Pro. 

3.5.3 Self-play Experiments 

As mentioned previously, an attempt to derive optimal feature weightings was 

performed as part of this thesis. This required the implementation of a genetic 

algorithm. Once again this was implemented using the Java programming language and 

the Meerkat API with Poker Academy Pro. Casper was able to perform self-play 

experiments within Poker Academy Pro in an attempt to improve its performance. These 

experiments are described in detail in Chapter 4. 

3.5.4 Real Opponents 

Finally, a separate implementation of Casper was required to be able to 

challenge real opponents across the internet. This was achieved using a product known 

as WinHoldEm10, which provides the capability to interface into online poker sites. 

WinHoldEm allows programmers to write their own dynamically linked libraries using 

the C/C++ programming language. All testing against real opponents was performed on 

the Full Tilt Poker11 online poker site using the WinHoldEm software. 

 
 
 
 
 
 
 

                                                 
9 http://www.poker-academy.com/ 
10 http://www.winholdem.net/ 
11 http://www.fulltiltpoker.com/ 
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Chapter 4 

Improving CASPER: Investigating 
Optimal Feature Weights 
 

The previous chapter described the design and implementation of Casper, where 

feature weight values were hand picked based on how important they were believed to 

be. This chapter examines the possibility of improving Casper by deriving optimal 

feature weight values algorithmically. Two attempts to derive optimal weights were 

investigated. The first involved the use of self-play experiments in an attempt to derive a 

set of general feature weights suitable for use against any competition. Once this was 

completed the derivation of weights directly suited to a specific set of opponents was 

investigated. 

4.1 Hand Picked Weights 

Each indexed feature that Casper uses to retrieve similar cases needs to be 

assigned a specific weight which indicates how much it contributes to the retrieval 

process. Casper used weights in the range from 0 to 100 where 0 indicates that the 

feature is not used in retrieval and 100 is the maximum possible value. Casper initially 

used the feature weightings detailed in Figure 4.1. 

The values given in Figure 4.1 are hand picked weights which are thought to 

represent the importance of each particular feature. The greatest importance was 

assigned to features that represent the strength of Casper’s hand. These features include 

immediate hand strength, positive potential, negative potential and hand ranking. 

All other features were then given much lower values and can roughly be classified into 

two subsets:  

(1) – Features that control how many bets Casper has made or needs to make e.g. 

the bets committed and bets to call features, and 

(2) – All other features. 
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Preflop Weighting 

Number of players 5 

Relative position 10 

Players in current hand 10 

Players yet to act 5 

Small bets committed 5 

Small bets to call 10 

Pot Odds 5 

Hand ranking 50 

 

Turn Weighting 

Number of players 5 

Relative position 5 

Previous round total bets 5 

Players in current hand 5 

Players yet to act 5 

Bets committed 20 

Bets to call 20 

Small bets in pot 5 

Pot Odds 5 

Immediate hand strength 80 

Positive potential 80 

Negative potential 80 

Flop Weighting 

Number of players 5 

Relative position 10 

Previous round total bets 5 

Players in current hand 5 

Players yet to act 5 

Bets committed 10 

Bets to call 10 

Small bets in pot 5 

Pot Odds 5 

Immediate hand strength 80 

Positive potential 80 

Negative potential 80 

River Weighting 

Number of players 5 

Relative position 5 

Previous round total bets 5 

Players in current hand 5 

Players yet to act 5 

Bets committed 10 

Bets to call 10 

Small bets in pot 15 

Pot Odds 40 

Immediate hand strength 80 

 
 
 

 

 

Figure 4.1: Casper’s initial feature weight values. 
 

 

All features in category (2) (excluding relative position) were given a default 

weight value of 5. Features in category (1) were given slightly higher preference over 

features in category (2). 
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4.2 Self-play Experiments 

Following the results obtained using the above hand picked feature weights an 

investigation into obtaining more optimal feature weights was conducted. An 

evolutionary computing approach was taken whereby a genetic algorithm was used 

together with self-play experiments to evolve a population of general optimal weight 

parameters. Each hypothesis in the search space was simply the concatenation of the 

preflop, flop, turn and river weights, for example, the hypothesis that would be used to 

represent the hand picked weights from the previous section would look as follows: 

 

 
Figure 4.2: Hand-picked weights hypothesis. 

 

The details of the genetic algorithm used are as follows: 

 

- Each generation consisted of nine instances of Casper. The only difference 

being the feature weights which were used. 

- All nine instances of Casper play at the same table against each other and 

their profits/losses are recorded. 

- Initially the first generation were each assigned random weight values for 

each feature. 

-  A fitness function was used to probabilistically select members of the 

current generation. The fitness function was simply the amount of money 

that each version of Casper had won or lost during the self-play experiments.  

- Each generation consisted of playing approximately 5000 hands at the poker 

table. 

- Selection, crossover and mutation were used to derive the next generation 

(explained below). 

4.2.1 Selection 

Rank selection was used to probabilistically select a number of instances from 

the current population to be used in the successor population.  
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After the completion of approximately 5000 hands all instances of Casper were 

ranked based on the profit which they had accumulated. Each instance was then given a 

number from 1 to 9 indicating their probability of selection. The instance that incurred 

the least profit (greatest loss) was assigned the value 1. The instance that achieved the 

second greatest loss was assigned the value 2 and so on, up until the instance that 

achieved the greatest profit was assigned the value 9. This generates a proportional bar 

graph as follows: 

 

 
Figure 4.3: Proportional bar graph representing probability of selection. 

 

The horizontal area in the graph above represents the probability of selection 

into the next population. As can be seen the instance that achieved the least profit 

(instance 1) has little probability of surviving to the next generation, whereas the better 

each instance did the higher the probability they will survive. The exact selection 

probabilities used are displayed in the follow pie chart: 
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Figure 4.4: Pie chart with selection probabilities. 

 
 

During initial experiments five instances were chosen for selection to be used in 

the next generation. Instances were chosen with replacement, meaning that multiple of 

the same instance could be carried forward to the next generation. Early investigation 

into this approach seemed to suggest a problem with crowding where instances that 
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initially achieved a greater fitness value quickly began to dominate the population, 

leading to a lack of diversity (Mitchell 1997). The number of instances used in selection 

was then dropped down to three, which had the result of improving the crowding 

problem. Once again replacement was allowed. 

4.2.2 Crossover 

During selection hypotheses are selected from the current population and placed 

into the next generation unchanged. Crossover, however, attempts to select members of 

the current population to produce offspring and use these new hypotheses in the next 

generation. Once again rank selection is used to probabilistically select pairs of parent 

hypotheses from the current population. These parent hypotheses are then combined 

using a crossover mask to produce two new offspring. A crossover mask is simply a bit 

string composed entirely of 1’s and 0’s which are used to control which parent 

contributes which bit to each offspring. Single-point crossover was used for each stage 

of play (preflop, flop, turn and river) and the result is concatenated together to form a 

new hypothesis. As an example, consider combining the hand-picked weights from 

Figure 4.2 and another parent hypothesis given below (note: only the preflop stage is 

considered here). 

 

Preflop weights for parent 1. 

Weight 5 10 10 5 5 10 5 50 

Index 0 1 2 3 4 5 6 7 
 

Preflop weights for parent 2. 

Weight 30 5 15 5 20 80 5 100 

Index 0 1 2 3 4 5 6 7 
 
 

A random number is generated between 1 and 7 (inclusive) to indicate the 

crossover point, e.g. using a value of 4 would produce the following crossover mask: 

11110000. This crossover mask now controls which parent contributes which bit to each 

offspring and would produce the following output: 
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Preflop weights for offspring 1. 

Weight 5 10 10 5 20 80 5 100 

Index 0 1 2 3 4 5 6 7 
 

Preflop weights for offspring 2. 

Weight 30 5 15 5 5 10 5 50 

Index 0 1 2 3 4 5 6 7 
 

The same procedure is also separately applied to the flop, turn and river weights 

and the concatenation of the output produces two new offspring hypotheses. Three pairs 

of parents were used in the final version of the genetic algorithm to produce a total of 

six offspring. Parent hypotheses were allowed to be selected multiple times, but they 

were not allowed to crossover with themselves. 

4.2.3 Mutation 

Finally, once a new generation of nine hypotheses had been constructed, using 

selection and crossover, a single hypothesis was chosen at random and one of its 

weights replaced by generating a random number between 0 and 100. 

4.2.4 Implementation 

The genetic algorithm described above was implemented in Java and used the 

Meerkat API to interface into Poker Academy Pro 2.512 which allowed different poker 

bots to challenge each other at the poker table. As the table was limited to nine players 

each generation consisted of nine separate hypotheses. As stated above 5000 hands were 

played and then operations such as selection, crossover and mutation were performed to 

produce the next generation of nine players. After experimenting with various 

parameters such as the selection and crossover rates improvements were made to the 

crowding problem (described above). However, it was noticed that crowding still 

seemed to take place after approximately 7 – 9 generations into the algorithm. To 

overcome this problem it was decided to run several genetic algorithms and to combine 

the results, in an attempt to better search the hypothesis space. Nine separate GA’s were 

run, each consisting of ten generations. Each GA began by generating random 

                                                 
12 http://www.poker-academy.com/ 
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hypotheses. After ten generations had completed (50,000 poker hands) the final 

generation normally consisted of very similar hypotheses. Each of the best hypotheses 

(i.e. the hypothesis that maximised the fitness function) from the nine genetic algorithms 

run were collected and used as initial hypotheses in a final genetic algorithm. The final 

GA once again consisted of ten generations. After ten generations had completed the 

hypothesis with the highest fitness was once again chosen. This hypothesis was used as 

an approximation to the optimal feature weights desired. In total 500,000 poker hands 

were played over 100 generations to derive this set of weights. Figure 4.5 shows a 

pictorial representation of the genetic algorithm’s design. 

 

 

 

 
Figure 4.5: Pictorial representation of GA design. 
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4.2.5 Derived Weights 

Figure 4.6 lists the optimal feature weights produced by the genetic algorithm 

for each separate stage of play. The hand picked weights are replicated in brackets for 

convenience. 

 

Preflop Weighting 

Number of players 15 (5) 

Relative position 61 (10) 

Players in current hand 54 (10) 

Players yet to act 62 (5) 

Small bets committed 53 (5) 

Small bets to call 83 (10) 

Pot Odds 93 (5) 

Hand ranking 94 (50) 

 

Turn Weighting 

Number of players 26 (5) 

Relative position 14 (5) 

Previous round total bets 22 (5) 

Players in current hand 15 (5) 

Players yet to act 16 (5) 

Bets committed 55 (20) 

Bets to call 7   (20) 

Small bets in pot 35 (5) 

Pot Odds 32 (5) 

Immediate hand strength 96 (80) 

Positive potential 72 (80) 

Negative potential 71 (80) 

Flop Weighting 

Number of players 9  (5) 

Relative position 23 (10) 

Previous round total bets 62 (5) 

Players in current hand 45 (5) 

Players yet to act 54 (5) 

Bets committed 82 (10) 

Bets to call 70 (10) 

Small bets in pot 52 (5) 

Pot Odds 39 (5) 

Immediate hand strength 99 (80) 

Positive potential 74 (80) 

Negative potential 51 (80) 

River Weighting 

Number of players 38 (5) 

Relative position 1   (5) 

Previous round total bets 55 (5) 

Players in current hand 37 (5) 

Players yet to act 6   (5) 

Bets committed 98 (10) 

Bets to call 99 (10) 

Small bets in pot 1   (15) 

Pot Odds 26 (40) 

Immediate hand strength 98 (80) 

 
 

 

 
 

 
Figure 4.6: Casper’s feature weights derived using a genetic algorithm. 
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Perhaps what stands out most is that relatively high weights are assigned to 

features that refer to the strength of Casper’s hand. For example, preflop hand ranking 

is given a value of 94 and flop, turn and river immediate hand strength are given 

values of 99, 96 and 98 respectively. Recall that features that control how many bets 

Casper has made or needs to make such as bets committed and bets to call were 

thought to have less significance than features that refer to Casper’s hand strength, but 

were thought more important than other features such as relative position. The above 

weights appear to agree with this assumption, assigning values of 98 and 99 to bets 

committed and bets to call respectively during the river stage, as well as 82 and 70 

during the flop stage. However, this is not the case for the values assigned during the 

turn, where bets committed was given a value of 55 and bets to call assigned a value of 

only 7. 

4.2.6 Convergence 

Perhaps an explanation for the discrepancies in weights described above is that 

the genetic algorithm has not converged upon the optimal solution. Due to the nature of 

the problem it is difficult to determine exactly whether the algorithm has converged or 

not, however we can possibly gain some insight into the results of the GA by examining 

the difference in player’s profits over successive generations, also known as the 

variance. 

4.2.6.1 Variance 

Recall that each generation is made up of nine players. The only difference 

between each player are the weights they have assigned to each feature. At the 

beginning of a generation all individuals begin with $0 profit/loss. Once 5000 hands 

have been completed all individuals in the population have their profit/loss recorded. 

The difference between the highest profit earned and the greatest loss incurred during 

the generation is known as the variance. The variance was recorded over successive 

generations in an attempt to monitor possible convergence and track the progress of the 

genetic algorithm. Figure 4.7 below shows a plot of the variance for each generation for 

four of the ten genetic algorithm invocations that were conducted (only four GA’s are 

shown to help improve the clarity, however their behaviour is relatively typical of the 

remaining GA’s).  
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Figure 4.7: Bankroll variance recorded for each generation for a subset of four GA’s. 

 

 
Figure 4.8: Average bankroll variance across all GA’s. The data indicates a downward trend. 
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While the data represented in Figure 4.7 indicates a lot of variability it does 

appear as though the variance is decreasing over successive generations. To examine 

this further the average variance over the first nine GA invocations were recorded. This 

information is displayed graphically in Figure 4.8. 

Figure 4.8 seems to support the fact that as the number of generations increases 

the average variance decreases, in general. After the first generation, where all 

individuals in the population have been assigned random weights, the average bankroll 

variance is $9,655.95. This figure decreases to $6,518.19 after the last generation, where 

the weights should have now converged to some local minima.  

Finally, the changes in variance observed for the final invocation of the genetic 

algorithm are displayed in Figure 4.9. Recall, that generation 1 was made up of the 9 

best hypotheses obtained from the previous 9 GA’s. While the variance values have 

decreased the overall downward trend remains the same. 

 

 
Figure 4.9: Bankroll variance recorded for the final invocation of the genetic algorithm. 

 

From these observations it appears as though the overall genetic algorithm is 

possibly converging. One possible explanation for the decreasing trend is as follows: 
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Recall that the population that comprises each first generation is made up of random 

hypotheses, i.e. random weight vectors. Now, some of these hypotheses will be close to 

optimal solutions and others will be further away in the search space or, equivalently, 

some individuals in the population will be good players and others will be bad. It would 

be expected that after 5000 poker hands were played the better players will have 

extracted more money from the worse players than from other individuals. Therefore, 

the good players should have earned a considerable profit and the bad players incurred a 

considerable loss. As each generation progresses and operations such as selection and 

crossover are performed it becomes more likely that the bad players will be 

extinguished from the population and the better players will proceed into the next 

generation. So, overall the individuals in future generations should become better 

players and therefore it becomes harder to substantially increase profits (because bad 

players are no longer giving their money away to better players). As a result, the 

variance tends to decrease. In this sense the variance could possibly act as an 

approximate measure of the quality of the individuals that make up a generation.  

4.3 Opponent-Based Experiments 

The genetic algorithm described above attempted to derive a set of general 

optimal feature weights for use against all types of opponents. Further to this a separate 

genetic algorithm was designed to specifically take into account the opponents it was 

challenging. The opponents chosen were the University of Alberta Pokibots. Rather than 

conducting self-play experiments as in section 4.2, opponent-based experiments were 

performed where Casper was evolved by directly competing against a population of 

Pokibots. The aim of the genetic algorithm described below was to incorporate 

opponent modeling capabilities directly into the derivation of the feature weights. 

Once again each generation consisted of playing 5000 poker hands, however as 

Casper had to challenge separate opponents the population size had to decrease. It was 

decided to use a population of three instances of Casper and six Pokibots. Profits/losses 

were recorded for all versions of Casper and this information used to influence selection 

and crossover operations. 
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4.3.1 Selection 

Once again, rank selection was used to determine which hypotheses would 

proceed to the next generation. As the population size was so small, it was decided that 

only one hypothesis would be selected. Hypotheses were ranked by the amount of profit 

they had accumulated. The hypothesis that had achieved the greatest profit (or least loss) 

had a 50% probability of being selected for the next generation. This was followed by a 

33% probability for the second best hypothesis and a 17% probability for the worst 

hypothesis in the population. 

4.3.2 Crossover 

Rank selection was again used to probabilistically select one distinct pair of 

parent hypotheses from the current population to be used for crossover. Single-point 

crossover was used for each stage of play (preflop, flop, turn and river) and the result 

concatenated together to form two new hypotheses.   

4.3.3 Mutation 

Once selection and crossover had completed each hypothesis in the new 

generation had a 1% chance of mutation. Mutation involved selecting a random weight 

within the hypothesis and replacing its value with a random number between 0 and 100. 

4.3.4 Implementation 

As stated above, the design of the opponent-based GA differed from the general GA in 

that each table no longer consisted of nine instances of Casper. Each table now 

consisted of six Pokibots and three instances of Casper. Once again the first generation 

began by initialising all instances of Casper with random weights. After 5000 hands 

were completed selection, crossover and mutation operations (described above) were 

performed and a new generation created. Due to the decrease in population size it took 

fewer generations before crowding became an issue, therefore only five generations 

were conducted rather than ten. After five generations were completed the hypothesis 

which maximized the fitness function was recorded.  
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Figure 4.10: Pictorial representation of GA design. 

 

 

Once again multiple invocations of the genetic algorithm were performed in an 

attempt to fully explore the hypothesis space. Initially nine invocations were performed 

(GA1 – GA9) which resulted in nine separate hypotheses being generated. These 

hypotheses were split into three groups of three and used as the weights in the first 

generation for a further three invocations (GA1.1 – GA1.3). Once again, after five 

generations the best hypothesis was retained for each invocation. This resulted in a final 
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three hypotheses which were used as the initial weights in a final run of the genetic 

algorithm (FinalGA) to produce one set of opponent-based feature weights. In total 

325,000 poker hands were played over 65 generations to produce this set of weights. 

This design is represented pictorially in Figure 4.10. 

4.3.5 Derived Weights 

Preflop Weighting 

Number of players 97 (15) 

Relative position 62 (61) 

Players in current hand 82 (54) 

Players yet to act 78 (62) 

Small bets committed 49 (53) 

Small bets to call 3  (83) 

Pot Odds 42 (93)  

Hand ranking 73 (94) 

Flop Weighting 

Number of players 71 (9) 

Relative position 56 (23) 

Previous round total 
bets 32 (62) 

Players in current hand 93 (45) 

Players yet to act 53 (54) 

Bets committed 5  (82) 

Bets to call 34 (70) 

Small bets in pot 85 (52) 

Pot Odds 3  (39) 

Immediate hand 
strength 39 (99) 

Positive potential 45 (74) 

Negative potential 18 (51) 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Turn Weighting 

Number of players 46 (26) 

Relative position 1  (14) 

Previous round total 
bets 73 (22) 

Players in current hand 22 (15) 

Players yet to act 41 (16) 

Bets committed 55 (55) 

Bets to call 100 (7) 

Small bets in pot 93 (35) 

Pot Odds 27 (32) 

Immediate hand 
strength 32 (96) 

Positive potential 33 (72) 

Negative potential 13 (71) 

River Weighting 

Number of players 36 (38) 

Relative position 7  (1) 

Previous round total 
bets 6  (55) 

Players in current hand 4  (37) 

Players yet to act 79 (6) 

Bets committed 94 (98) 

Bets to call 98 (99) 

Small bets in pot 55 (1) 

Pot Odds 52 (26) 

Immediate hand 
strength 69 (98) 

 
 
Figure 4.11: Casper’s opponent-based feature 
weights derived using a genetic algorithm. 
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 Figure 4.11 highlights some significant differences between the weights derived 

for the first, general genetic algorithm (listed in brackets) compared to the opponent-

based genetic algorithm. Most notably, features that relate to Casper’s hand strength and 

potential, such as immediate hand strength, positive potential and negative potential 

have been assigned relatively lower values when compared to the other available 

features. Once again, there are discrepancies between salient features during the flop and 

the turn. According to the derived weights the most important features during the flop 

appear to be the amount of opponents also in the hand. Features such as bets committed 

and bets to call have had their values significantly reduced. However, the turn seems to 

indicate that bets to call is the most important feature (as does the river). 

4.3.6 Convergence 

Once again we would like to gain some insight into whether the genetic 

algorithm described above is actually converging or whether it is just producing random 

weight vectors. As the population in the opponent-based GA experiments consisted of 

competition from Pokibots it is possible to track the profits/losses recorded of the 

hypotheses in the population over successive generations in an attempt to try and 

establish whether the population is improving over time or not.   

4.3.6.1 Average Profit 

Recall that each generation consisted of three hypotheses and six instances of 

Pokibots. In order to establish whether the population is improving over time, the 

average profit for each of the three hypotheses was recorded for each generation. This 

information is graphed in Figure 4.12 for four out of the original nine genetic algorithms 

used. Only four instances are plotted to help improve clarity, however their behaviour is 

believed to be representative of the entire population.  

While some of the GA’s represented do exhibit improvements in profit over 

successive generations no obvious trend is evident in the data represented in Figure 

4.12.  

Next, the average for all of the GA’s (GA1 – GA9) was computed to try and 

determine the overall behaviour of the genetic algorithms. (Note: this is actually the 

average of the average for each individual GA). Figure 4.13 depicts this overall average 

profit for all initial GA’s.  
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Figure 4.12: Average profit for a subset of GA’s recorded over each generation. 

 
Figure 4.13: Overall average profit for all initial GA’s recorded over each generation. 
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Now the trend is much more apparent, over each successive generation the 

overall average profit appears to improve, or more correctly, the average loss steadily 

decreases. This appears to indicate that the overall pattern for each of the initial nine 

GA’s is an increase in profits (or decrease in losses). While each generation may be 

improving upon the preceding generation it is far from clear whether the GA is 

converging towards an optimal solution. 

The final invocation of the GA (FinalGA) involved establishing a population of 

three of the best hypotheses obtained from GA1.1, GA1.2 and GA1.3 (see Figure 4.10). 

This formed the initial generation for one final run of the GA, where once again another 

5 generations were processed. After 5 generations were completed the hypothesis which 

maximized the fitness function (i.e. obtained the greatest profit) was chosen as the 

derived set of weights. Figure 4.14 tracks the changes in average profit for all three 

hypotheses in the population over all 5 generations.  

 

 
Figure 4.14: Average profit recorded for each generation for the final GA. 

 

 

 61



Apart from the first generation, Figure 4.14 suggests an overall increase in 

profits (decrease in losses). After an initial, relatively high average profit (generation 1) 

then profit seems to steadily increase over generations 2 – 5, with the final ‘average 

profit’ being calculated at just under $0 (i.e. breaking even). 

It should also be mentioned that one of Pokibots main abilities is its opponent 

modelling capabilities. When Pokibot meets a new opponent it has no information about 

that opponent’s strengths or weaknesses or style of play. However, as the number of 

hands played increases Pokibot consistently gathers data about its opponent to try and 

model their style of play. This information is then used to inform Pokibot’s betting 

strategy against that particular opponent. This aspect of Pokibots play needs to be kept 

in mind when analysing the results of the genetic algorithm, as it becomes much harder 

to increase profits after playing a large number of hands against Pokibot. At the start of 

Generation 1 Pokibot has no information about Casper’s style of play, so no opponent 

modelling is possible. However, after approximately 10,000 hands (Generation 3) 

Pokibot would have gathered a large amount of data on modelling Casper’s play and 

would be using this data to determine how to act in certain situations. Therefore, 

Pokibot would most likely be playing differently then it was at the beginning of the GA. 

Casper has no such dynamic opponent modelling capabilities, rather the only thing that 

changes during the execution of the GA are Casper’s relative weights.  
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Chapter 5 
 
Results 
 
 

Casper has been evaluated by challenging many different opponents on various 

poker tables. To begin with Casper was evaluated by playing other poker bots provided 

through the commercial software product Poker Academy 2.5. Initially Casper was 

tested at two separate poker tables on Poker Academy 2.5. The first table was made up 

of the University of Alberta Pokibots and Simbots. This table consisted of strong, 

adaptive poker bots that model their opponents and try to exploit weaknesses. As Casper 

has no adaptive qualities of its own it was also tested against non-adaptive, but 

loose/aggressive opponents. A loose opponent is one that plays a lot more hands, 

whereas aggressive means that they tend to bet and raise more than other players. 

Finally, Casper was also tested against real opponents on the internet, offering a range 

of wildly differing styles of play. In total, three separate versions of Casper were 

evaluated. The first version of Casper used the hand-picked feature weights. The next 

version of Casper used the derived set of general weights from self-play experiments 

and the final version used the opponent-based feature weights specifically tailored for 

challenging the University of Alberta Pokibots. Each of these are presented below. 

5.1 Hand-picked Weights 

This section will describe the results obtained for Casper, using hand-picked 

weights, challenging computerised opponents. Recall that initially two separate versions 

of Casper were investigated that used the hand-picked weights: Casper01 and Casper02. 

Casper02 improved upon Casper01 by using a larger case-base generated from 

approximately 20,000 hands. A poker bot that makes totally random betting decisions 

was also tested separately against the same opponents as a baseline comparison. All 

games were $10/$20 limit games which consisted of 9 players. All players began with a 

starting bankroll of $100,000. 
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5.1.1 Strong/Adaptive Competition 

As stated above, the strong/adaptive competition was composed of various 

Pokibots and Simbots provided by the University of Alberta. Figure 5.1 plots the amount 

of small bets won for Casper01, Casper02 and the Random poker bot, over a period of 

approximately 20,000 hands. The small bet in this case is $10, therefore if a player has 

won one small bet they have made a profit of $10. Also listed are the amount of small 

bets won per hand (sb/h), this is a measure of how (un)profitable a particular player is. 

If a player makes +0.5 sb/h this means that they make a profit of half the small bet for 

every hand that they play. If the small bet is $10 this means they make $5 for every 

hand played. Say that player plays 40 hands per hour; this works out to be a profit of 

$200 per hour.  

 
 

Figure 5.1: Results obtained at the Strong/Adaptive Table. 
 
 

While Casper01 concludes with a slight loss and Casper02 concludes with a slight 

profit, Figure 5.1 suggests that both versions approximately break even against strong 

competition, whereas the random player exhausted its bankroll of $100,000 after 
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approximately 6,000 hands13. Casper01’s small bets per hand (sb/h) value is -0.009 

which indicates that Casper01 loses about $0.09 with every hand played. Casper02 

slightly improves upon this by winning approximately $0.04 for every hand played. 

Random play against the same opponents produces a loss of $16.70 for every hand 

played. 

5.1.2 Aggressive/Non-Adaptive Competition 

The next table that Casper was tested on consisted of different versions of another 

computerised opponent known as Jagbot (also available with Poker Academy 2.5). 

Jagbot is a loose/aggressive rule-based player. Its style of play is very different than that 

of Pokibot and Simbot in that it will play a lot more hands and bet very aggressively, 

this requires that Casper make a lot more decisions than previously. 

Figure 5.2 records the amount of small bets won over a period of approximately 

20,000 hands. Once again, a bot which makes completely random decisions was also 

tested separately against the same competition as a baseline comparison for Casper. 

 
Figure 5.2: Results obtained at the Aggressive/Non-Adaptive Table.  

                                                 
13 Not all data points are shown to improve clarity. 
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Figure 5.2 indicates that the first version of Casper tested is unprofitable against the 

aggressive/non-adaptive players. Casper01 loses approximately $0.90 for each hand 

played. Casper02, however, shows a considerable improvement in performance 

compared to Casper01. The addition of extra cases sees Casper02 produce a profit of 

+0.03 sb/h, or $0.30 for each hand played. Once again, the random player exhausted its 

initial bankroll after approximately 7000 hands, losing on average $14.90 for each hand 

played. 

It is also of interest to compare how Casper performs against the aggressive/non-

adaptive opponents compared to how the University of Alberta Pokibots and Simbots 

perform. Therefore, one Pokibot was selected to be tested against a table of Jagbots. As 

was one Simbot, tested against a separate table of Jagbots. The results obtained are 

presented in Figure 5.3. 

 

 
Figure 5.3: University of Alberta bots tested at the Aggressive/Non-Adaptive Table. 

 Figure 5.3 indicates a dramatic difference between the results obtained for the 

Pokibots and for the Simbots. The Pokibot tested makes a consistent profit of +0.08 

sb/h, compare this to Casper02 from Figure 5.2 which achieves a slightly lesser profit of 
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+0.03 sb/h. However, Simbot is unprofitable against the aggressive competition losing at 

a rate slightly less than the first version of Casper (i.e. Casper01). Therefore, while the 

final version of Casper (Casper02) is not as profitable as Pokibot is against aggressive 

competition, it appears as though it out performs Simbot against this particular set of 

opponents.  

5.2 Evolutionary Derived Weights 

 This section describes the results obtained against computerised opponents for 

the versions of Casper that used evolutionary derived weights. CasperGeneral refers to 

the use of general weights derived using self-play experiments, whereas 

CasperOppBased refers to the opponent-based set of weights. Finally, a version of 

Casper that used random weights, CasperRandom, was also tested in an attempt to 

determine whether there were any real performance differences between the separate 

sets of weights. Once again all games were $10/$20 limit games which consisted of 9 

players and all players began with a starting bankroll of $100,000. 

5.2.1 Strong/Adaptive Competition 

 The results obtained against the University of Alberta bots are recorded below in 

Figure 5.4. Using the weights derived for challenging general opponents Casper 

achieves a consistent loss against the strong/adaptive competition of  -0.06 sb/h or -

$0.60 per hand. Using random weights Casper consistently loses -0.11 sb/h or -$1.10 

per hand. If we compare this with the results obtained using hand-picked weights from 

section 5.1.1 we notice that using the derived weights for general competition has not 

improved Casper’s performance. Recall that using hand-picked weights Casper achieved 

a slight profit of +0.004 sb/h. 

 CasperOppBased on the other hand does appear to improve upon CasperGeneral. 

CasperOppBased uses weights that were derived specifically for this type of 

competition. While the results show a lot of variability, CasperOppBased concludes 

with a slight profit of +0.006 sb/h, marginally improving upon the hand-picked weights.  
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Figure 5.4: Results obtained at the Strong/Adaptive Table. 

 
 

5.2.2 Aggressive/Non-Adaptive Competition 

 Figure 5.5 displays the results of CasperGeneral and CasperRandom at the 

aggressive/non-adaptive table. CasperRandom was used as a baseline comparison for 

CasperGeneral. 
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Figure 5.5: Results obtained at the Aggressive/Non-Adaptive Table. 

 
 

 Figure 5.5 shows that the derived set of general weights has not improved upon 

the performance of using the initial hand-picked weights. Recall from section 5.1.2 that 

using hand-picked weights Casper achieved a profit of +0.03 sb/h, whereas 

CasperGeneral now achieves a loss of -0.02 sb/h, or $0.20 lost for each hand played. 

On the other hand it does appear that the evolutionary generated weights do actually 

perform better than randomly chosen weights. Using random weights Casper only 

managed to achieve -0.11 sb/h, or a loss of $1.10 for each hand played. Therefore, it 

would appear that while the evolutionary generated weights have not converged upon an 

optimal solution their performance is better than a random solution. 

5.3 Real Opponents 

Sections 5.1 and 5.2 above only discuss results obtained when Casper challenged 

various computerised opponents. However, Casper was also tested against real 
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opponents on the internet. All instances of Casper now used the entire case-base to 

make their betting decisions. The results obtained are detailed below. 

5.3.1 Play money 

Casper was initially tested against real opponents by playing on the ‘play 

money’ tables of internet poker websites. Here players from all over the world can 

participate in a game of poker using a bankroll of play money. Initially all players begin 

with a starting bankroll of $1000. In the event that this bankroll is exhausted, a player 

can top their bankroll back up to a maximum of $1000. All games played at the ‘play 

money’ table were $10/$20 limit games. At each table a minimum of two players and a 

maximum of nine players could participate in a game of poker. Casper was tested by 

playing anywhere between one opponent all the way up to eight opponents. Figure 5.6 

displays the results recorded at ‘play money’ tables for Casper (using hand picked 

weights) and CasperGeneral (using the derived general weights) as well as a random 

opponent which makes random decisions (used as a baseline comparison). 

 

 
Figure 5.6: Casper vs. Real Opponents at the Play Money tables. 
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 Both Casper and CasperGeneral earn consistent profit at the ‘play money’ tables. 

The results suggest that the use of Casper with hand picked weights outperforms 

CasperGeneral, which uses the evolutionary derived weights. Casper earns a profit of 

$2.90 for every hand played, followed by CasperGeneral with a profit of $2.20 for each 

hand. Random decisions resulted in exhausting the initial $1000 bankroll in just over 30 

hands, losing approximately -$30.80 for each hand played. 

Both Pokibot and Simbot have also been tested against real opponents by playing 

on Internet Relay Chat (IRC). The IRC server allows bots and humans to challenge each 

other online using “play money”. Results reported by (Davidson 2002) indicate that 

Pokibot achieves a profit of +0.22 sb/h, i.e. a profit of $2.20 per hand, and Simbot 

achieves a profit of +0.19 sb/h or $1.90 profit per hand. These results are very similar to 

those obtained by Casper, when challenging real opponents for play money. As Casper 

used Pokibot and Simbots playing style to build its casebase this result would be 

expected.  

 Because Casper was playing against real opponents the time taken to record the 

results is longer than when challenging computerised opponents. For this reason, fewer 

hands were able to be played against real opponents. Casper is also mainly suited to 

playing poker at a full table, i.e. with nine or ten players present, however the results 

recorded above consist of anywhere between two and nine players at a table. While we 

need to take caution in analysing the above results, it is safe to say that Casper is 

consistently profitable at the ‘play money’ tables.  

5.3.2 Real money 

 Because there is normally a substantial difference in the type of play at the ‘play 

money’ tables compared to the ‘real money’ tables it was decided to attempt to get an 

idea of how Casper would perform using real money against real opponents. Only one 

instance of Casper was tested. Because using hand-picked weights had achieved the best 

performance at the ‘play money’ tables it was decided to test this instance of Casper at 

the ‘real money’ tables. The betting limit used was $0.25/$0.50, i.e. a small bet of $0.25 

and a big bet of $0.50. The results are given in Figure 5.7. 

 Casper achieves a small bet per hand value of -0.07. Therefore, Casper now 

loses on average $0.02 per hand. The results indicate that while Casper loses money 

very slowly it is now, nonetheless, unprofitable against this set of opponents. Due to the 
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fact that real money was being used, much fewer hands were able to be recorded. 

Unfortunately, no results exist for Pokibot or Simbot challenging real opponents using 

real money. Therefore, it is not possible to evaluate how Casper performs using real 

money compared to Pokibot or Simbot. 

 

 

 

 
Figure 5.7: Casper vs. Real Opponents at the Real Money tables. 

5.4 Case Similarity and Retrieval 

From the results presented above it appears as though Casper’s final outcome is 

quite different depending on the type of opponents being challenged. The strength of a 

particular set of opponents would most likely be the main factor that influences how 

Casper achieves against these opponents. Another factor that would affect Casper’s 

overall results would be the particular playing style of the opposition. Casper may have 
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encountered very dissimilar scenarios at the different tables that it played on because the 

playing style of the opponents is different.  

 For these reasons it was decided to investigate the effect that challenging 

separate sets of opponents had on Casper’s case retrieval and similarity. Table 5.1 

summarises the average number of retrieved cases used to make a betting decision and 

the average similarity value for these retrieved cases14. The average number of retrieved 

cases is shown in parenthesis beside the average similarity. 

 

 
Strong/Adaptive Aggressive/Non-

Adaptive 
Real Opponents 
Play Money 

Real Opponents 
Real Money 

Preflop 0.98850364 (92.4) 0.98845772 (90.1) 0.976867 (69.5) 0.917778 (46.4) 

Flop 0.98220273 (94.7) 0.98166614 (85.3) 0.979374 (59.0) 0.971213 (44.4) 

Turn 0.97887567 (89.3) 0.97826279 (88.7) 0.971135 (62.6) 0.964151 (49.2) 

River 0.98286971 (93.2) 0.98237579 (90.2) 0.982322 (63.4) 0.980000 (69.0) 

 
Table 5.1: Average similarity and number of retrieved cases (shown in brackets) for the 

different sets of opponents that Casper challenged. 
 

Table 5.1 indicates high similarity and retrieval rates at the Strong/Adaptive 

table. As Casper’s casebase was constructed by recording instances of games played at 

this table this result is to be expected. While similarity and retrieval values drop slightly 

at the Aggressive/Non-Adaptive table they are, nonetheless, still quite high. At the Real 

Opponents – Play Money table average similarity is still over the similarity threshold 

value, but case retrieval has dropped considerably. Finally, at the real money table the 

number of retrieved cases has fallen again and for the preflop and turn stages average 

similarity is now below the similarity threshold. 

 Therefore, it appears as though the different playing style of the various sets of 

opponents does have an effect on Casper’s decision making and therefore final result at 

that table. Take for example the preflop stage at the Real Money table. Casper now 

needs to make betting decisions based on fewer more dissimilar cases that it has stored 

in its casebase 

Appendix D lists several sample target cases at each table as well as the number 

of retrieved cases and their average similarity.  

                                                 
14 Recall that the similarity threshold was 97% and that at most 100 cases could be used for retrieval and 
when no cases exceeded the similarity threshold the top 20 cases were used regardless of their similarity 
value. 
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5.5 Results Summary 

 In summary, Casper manages to approximately breakeven when challenging the 

University of Alberta poker-bots and Casper achieves a profit comparable to Pokibot 

and Simbot when challenging real opponents using play money. As Casper used data 

obtained from Pokibot and Simbot to build its casebase these results would be expected. 

Casper was also profitable when challenging a separate set of aggressive, computerised 

opponents. However, Casper failed to make a profit when challenging real opponents 

using real money. 

 Results using the evolutionary generated weights were somewhat mixed. While 

a slight improvement was made using the opponent-specific weights, using the general 

weights usually resulted in degradation in performance compared to hand-picked values. 

However, all evolutionary generated weights performed better than the use of random 

weights. 
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Chapter 6 
 
Conclusions 
 

 
 

In the past little research has been presented on applying the tools and 

techniques of Case-Based Reasoning to the game of Texas Hold’em. One instance of a 

case based poker player was described in (Sandven and Tessem 2006) which used case-

based learning to play poker. The results of this research indicated a lot of room for 

improvement. Other attempts at applying CBR to Poker have mainly focused on one 

particular aspect of the game e.g. (Salim and Rohwer 2005) which attempted to use 

CBR for opponent modelling purposes. This thesis has tried to add to and improve 

current research in the area of applying CBR principles to the game of Texas Hold’em. 

  A case-based poker player was developed, nicknamed Casper, that uses CBR to 

make all of it’s betting decisions. The results of the Casper system suggest that it is 

possible to record instances of poker games played between strong players and then 

reuse these to obtain a similar performance. This approach bypasses the need for any 

initial, intensive knowledge engineering effort, such as that required for both Pokibot 

and Simbot. 

 A further outcome of this work was the investigation of improving feature 

weights by deriving weights algorithmically, rather than relying on hand-picked values. 

The results for this, reported in Chapter 5, were somewhat mixed. In total, two separate 

genetic algorithms were designed and implemented. The first focused on deriving a set 

of general weights that Casper could use against any type of competition. While the 

second algorithm focused on specifically tailoring Casper’s weights for use against a 

specific set of opponents (in this case the University of Alberta Pokibots). The results 

represented suggest that using the Opponent-Specific weights slightly improved 

performance compared to using hand-picked weights (Figures 5.1 and 5.4). The overall 

results for the set of general opponent weights show that performance actually degraded 

compared to using hand-picked weights. This suggests that the algorithm used has not 

converged upon an ‘optimal’ solution. One possible reason for this may come down to 
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the actual design of the genetic algorithm or the fact that more generations may have 

been needed. On the other hand, using algorithmically generated weights always 

outperformed the use of random weights (Figures 5.4 and 5.5). So, even though an 

optimal set of weights may not have been derived, it appears as though some 

improvement is taking place.  

The results represented in this thesis show that by using a case-based approach 

Casper is able to play evenly against the University of Alberta poker-bots and profitably 

against other computerised opponents and real opponents using ‘play’ money. Casper 

was not, however, profitable against real opponents when using real money. In fact, a 

substantial difference was observed when Casper challenged real opponents using real 

money, compared to using play money. Casper makes consistent profit when playing 

with play money, however using real money Casper only manages to slowly lose. This 

difference is mainly thought to occur due to the change in opponent strength. It is 

believed that opponents play quite differently when real money is at stake as opposed to 

play money. In general, players at the real money table seem to normally only play their 

better hands. It was observed that when Casper won a pot its winnings would be a lot 

less at the real money table than at the play money table, indicating that players at the 

real money table had a better idea of the actual strength of Casper’s hand. 

Another possible cause for the difference in performance may be because of an 

overall decrease in similarity of retrieved cases at the real money tables. As an example, 

when examining similarity for the preflop case-base it was discovered that against 

computerised opponents Casper does not exceed the similarity threshold (97%) for 

approximately 2% of total target cases. However, when compared to real opponents 

using real money this amount increases to approximately 37% of total target cases. 

Hence, there is a dramatic increase in the number of times that Casper fails to retrieve 

similar cases during the preflop stage at the real money tables, resulting in Casper 

having to make betting decisions based on less similar cases. The reason for this drop in 

similarity may be because the case-base is not complete and fails to describe many of 

the scenarios that can occur at the poker table.  

Finally, it should be noted that due to the high variance of the game of Texas 

Hold’em it is normally common for at least 10,000 hands to be played to get an accurate 

indication of performance. However, this was not possible for the results obtained at the 

real money table. In total, approximately 2200 hands were played using real money. So 

any results reported from this data needs to be interpreted with caution.  
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6.1 Future Work 

 While Casper does well using play money against both computerised and real 

opponents, it is evident that improvements need to be made for Casper to be profitable 

when real money is at stake. Listed below are a few improvements that may aid in this 

goal. 

 
• Recall that Casper’s case-base is derived by recording actions observed 

during play between both Pokibot and Simbot. While these two poker-

bots have proven to be profitable in the past (once again using play 

money), they are far from expert players. If expert data were available it 

would most likely improve Casper’s case-base and hence its level of 

play. At the present there is no known source for this expert data, 

however another option may be to build Casper’s case-base by recording 

actions observed at real money tables. It seems likely that by recording 

this data and then playing at these same tables would result in an 

improvement in performance compared to using data obtained at 

separate poker tables. A problem with this approach is that the hole 

cards of a player need to be known before a case can be entered into the 

case-base. Therefore, it would only be possible to record a case when a 

particular hand has reached a showdown and the hole cards have been 

revealed. This would drastically slow down the generation of the case-

base.  

• At the present Casper simply reuses the cases stored in its case-base. A 

possible improvement would be to allow Casper to learn by recording 

and storing new cases observed during play. This approach may allow 

Casper to adapt better to separate poker tables where the type of 

opponents may vary. 

• Casper’s betting decision is currently made by recording all the actions 

for all the retrieved cases which exceed a similarity threshold of 97%. 

This strategy simply reuses these decisions and doesn’t consider the 

actual outcome of each decision. Therefore, at present Casper is simply 

making the most popular decision recorded by Pokibot and Simbot. It 
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seems a more beneficial approach would be to actually allow Casper to 

evaluate the outcome of these decisions (based on losses incurred or 

profits made) and then choose the most effective action. 

• Finally, Casper currently has no opponent modelling capabilities. A key 

skill in the game of poker is being able to read your opponents and 

attempt to determine the actual strength of their hand. Adding the ability 

to infer the hand strength of a particular opponent based on how that 

opponent has been playing in the past would most likely improve 

Casper’s performance at the poker table. 
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Appendix A 
 
Investigating the Effectiveness of 
Applying Case-Based Reasoning to the 
game of Texas Hold’em 
 
 
 
 
The following paper was published in the proceedings of the 20th Florida Artificial 

Intelligence Research Society Conference (FLAIRS), Key West, Florida, May 2007. 

AAAI Press. 

 

http://www.cise.ufl.edu/~ddd/FLAIRS/flairs2007/
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Abstract 

This paper investigates the use of the case-based reasoning 
methodology applied to the game of Texas hold’em. The 
development of a CASe-based Poker playER (CASPER) is 
discussed. CASPER uses knowledge of previous poker 
scenarios to inform a betting decision. CASPER improves 
upon previous case-based reasoning approaches to poker 
and is able to play evenly against the University of 
Alberta’s Pokibots and Simbots and profitably against other 
competition.  

1. Introduction  
The game of poker provides an interesting environment to 
investigate how to handle uncertain knowledge and issues 
such as dealing with chance and deception in a hostile 
environment. Games in general offer a well suited domain 
for investigation and experimentation due to the fact that a 
game is usually composed of several well defined rules 
which players must adhere to. Most games have precise 
goals and objectives which players must meet to succeed. 
For a large majority of games the rules imposed are quite 
simple, yet the game play itself involves a large number of 
very complex strategies. Success can easily be measured 
by factors such as the amount of games won, the ability to 
beat certain opponents or, as in the game of poker, the 
amount of money won. 
 Up until recently AI research has mainly focused on 
games such as chess, checkers and backgammon. These are 
examples of games which contain perfect information. The 
entire state of the game is accessible by both players at any 
point in the game, e.g. both players can look down upon 
the board and see all the information they need to make 
their playing decisions. These types of games have 
achieved their success through the use of fast hardware 
processing speeds, selective search and effective 
evaluation functions (Schaeffer, Culberson et al. 1992). 
 Games such as poker on the other hand are classified as 
stochastic, imperfect information games. The game 
involves elements of chance (the actual cards which are 
dealt) and hidden information in the form of other player’s 

 
Compilation copyright © 2007, American Association for Artificial  
Intelligence (www.aaai.org). All rights reserved. 
 
* With special thanks to the University of Alberta Computer Poker 
Research Group. 

hole cards (cards which only they can see). This ensures 
that players now need to make decisions with uncertain 
information present. 
 The focus of this paper is to investigate the application 
of CBR to the game of poker. We have developed a poker 
playing robot, nicknamed CASPER (CASe-based Poker 
playER), that attempts to use knowledge about past poker 
experiences to make betting decisions. CASPER plays the 
variation of the game known as limit Texas Hold’em and 
has been tested against other poker bots.  
 The remainder of this paper is structured as follows, 
section two will detail related previous research, section 
three gives a brief introduction to the game of Texas 
hold’em. Sections four, five and six describe the design 
and implementation of CASPER. This is followed by the 
experimental results obtained (section seven) and a 
conclusion and discussion of future work in section eight. 

2. Related Work  
Over the last few years there has been a dramatic increase 
in the popularity of the game of Texas hold’em. This 
growing popularity has also sparked an interest in the AI 
community with increased attempts to construct poker 
robots (or bots), i.e. computerised poker players who play 
the game based on various algorithms or heuristics. Recent 
approaches to poker research can be classified into three 
broad categories:  
 
Heuristic rule-based systems: which use various pieces 
of information, such as the cards a player holds and the 
amount of money being wagered, to inform a betting 
strategy.  
Simulation/Enumeration-based approaches: which 
consist of playing out many scenarios from a certain point 
in the hand and obtaining the expected value of different 
decisions. 
Game-theoretic solutions: which attempt to produce 
optimal strategies by constructing the game tree in which 
game states are represented as nodes and an agents 
possible decisions are represented as arcs. 
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The University of Alberta Computer Poker Research 
Group1 are currently leading the way with poker related 
research, having investigated all of the above approaches. 
Perhaps the most well known outcome of their efforts are 
the poker bots nicknamed Loki/Poki (Schaeffer, Billings et 
al. 1999; Billings, Davidson et al. 2002).  
 Loki originally used expert defined rules to inform a 
betting decision. While expert defined rule-based systems 
can produce poker programs of reasonable quality 
(Billings, Davidson et al. 2002), various limitations are 
also present. As with any knowledge-based system a 
domain expert is required to provide the rules for the 
system. In a strategically complex game such as Texas 
hold’em it becomes impossible to write rules for all the 
scenarios which can occur. Moreover, given the dynamic, 
nondeterministic structure of the game any rigid rule-based 
system is unable to exploit weak opposition and is likely to 
be exploited by any opposition with a reasonable degree of 
strength. Finally, any additions to a rule-based system of 
moderate size become difficult to implement and test 
(Billings, Peña et al. 1999). 
 Loki was later rewritten and renamed Poki (Davidson 
2002). A simulation-based betting strategy was developed 
which consisted of playing out many scenarios from a 
certain point in the hand and obtaining the expected value 
(EV) of different decisions. A simulation-based betting 
strategy is analogous to selective search in perfect 
information games.  
 Both rule-based and simulation-based versions of Poki 
have been tested by playing real opponents on an IRC 
poker server. Poki played in both low limit and higher limit 
games. Poki was a consistent winner in the lower limit 
games and also performed well in the higher limit games 
where it faced tougher opposition (Billings, Davidson et al. 
2002). More recently the use of game theory has been 
investigated in the construction of a poker playing bot. The 
University of Alberta Computer Poker Research Group 
have attempted to apply game-theoretic analysis to full-
scale, two-player poker. The result is a poker bot known as 
PsOpti that is:  

able to defeat strong human players and be 
competitive against world-class opponents (Billings, 
Burch et al. 2003). 

 
 There have also been numerous other contributions to 
poker research outside the University of Alberta Poker 
Research Group. Sklansky and Malmuth have detailed 
various heuristics for different stages of play in the game 
of Texas hold‘em (Sklansky 1994; Sklansky and Malmuth 
1994). The purpose of these rules, however, has been to 
guide human players who are looking to improve their 
game rather than the construction of a computerised expert 
system. (Korb, Nicholson et al. 1999) have produced a 
Bayesian Poker Program (BPP) which makes use of 
Bayesian networks to play five-card stud poker. (Dahl 
2001) investigated the use of reinforcement learning for 

                                                 
1 http://www.cs.ualberta.ca/~games/poker/ 

neural net-based agents playing a simplified version of 
Texas hold’em.   
 Finally, we have encountered relatively few attempts to 
apply the principles and techniques of CBR to the game of 
poker. (Sandven and Tessem 2006) constructed a case-
based learner for Texas hold’em which they nicknamed 
Casey. Casey began with no poker knowledge and builds 
up a case-base for all hands that it plays. Sandven and 
Tessem report that Casey plays on a par with a simple rule-
based system against three opponents, but loses when it 
faces more opponents. (Salim and Rohwer 2005) have 
attempted to apply CBR to the area of opponent modeling, 
i.e. trying to predict the hand strength of an opponent given 
how that opponent has been observed playing in the past. 
While CBR seems inherently suited to this particular type 
of task they report better performance by simply relying on 
long-term averages. 

3. Texas Hold’em  
Texas hold’em is the variation used to determine the 
annual World Champion at the World Series of Poker. This 
version of the game is the most strategically complex and 
provides a better skill-to-luck ratio than other versions of 
the game (Sklansky 1994).  
 The game of Texas hold’em is played in four stages, 
these include the preflop, flop, turn and the river. During 
each round all active players need to make a betting 
decision. Each betting decision is summarised below: 
 
Fold:  A player discards their hand and contributes no 
money to the pot. Once a player folds they are no longer 
involved in the current hand, but can still participate in any 
future hands. 
Check/Call:  A player contributes the least amount 
possible to stay in the hand. A check means that the player 
invests nothing, whereas a call means the player invests the 
least amount required greater than $0. 
 Bet/Raise:  A player can invest their own money to 
the pot over and above what is needed to stay in the current 
round. If the player is able to check, but they decide to add 
money to the pot this is called a bet. If a player is able to 
call, but decides to add more money to the pot this is called 
a raise. 
 
 All betting is controlled by two imposed limits known as 
the small bet and the big bet. For example, in a $10/$20 
game the small bet is $10 and all betting that occurs during 
the preflop and the flop are in increments of the small bet. 
During the turn and the river all betting is in increments of 
the big bet, $20. The number of bets made within each 
stage of the game is capped at a maximum of 5. All results 
detailed in this paper refer to a $10/$20 limit game2. 
Before the hand begins two forced bets are made, known 
as the small blind (half the small bet) and the big blind 
(one full small bet), to ensure that there is something in the 

 
2 In no limit there is no restriction on the amount a player can bet. 
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pot to begin with. Each of the four game stages are 
summarised below: 
 
Preflop: The game of Texas hold’em begins with each 
player being dealt two hole cards which only they can see. 
A round of betting occurs. Once a player has made their 
decision play continues in a clockwise fashion round the 
table. As long as there are at least two players left then 
play continues to the next stage. During any stage of the 
game if all players, except one, fold their hand then the 
player who did not fold their hand wins the pot and the 
hand is over. 
Flop: Once the preflop betting has completed three 
community cards are dealt. Community cards are shared by 
all players at the table. Players use their hole cards along 
with the community cards to make their best hand. Another 
round of betting occurs. 
Turn: The turn involves the drawing of one more 
community card. Once again players use any combination 
of their hole cards and the community cards to make their 
best hand. Another round of betting occurs and as long as 
there are at least two players left then play continues to the 
final stage. 
River: During the river the final community card is dealt 
proceeded by a final round of betting. If at least two 
players are still active in the hand a showdown occurs in 
which all players reveal their hole cards and the player 
with the highest ranking hand wins the entire pot (in the 
event that more than one player holds the winning hand 
then the pot is split evenly between these players). 

4. Casper System Overview 
CASPER uses CBR to make a betting decision. This 
means that when it is CASPER’s turn to act he evaluates 
the current state of the game and constructs a target case to 
represent this information. A target case is composed of a 
number of features. These features record important game 
information such as CASPER’s hand strength, how many 
opponents are in the pot, how many opponents still need to 
act and how much money is in the pot. Once a target case 
has been constructed CASPER then consults his case-base 
(i.e. his knowledge of past poker experiences) to try and 
find similar scenarios which may have been encountered. 
CASPER’s case-base is made up of a collection of cases 
composed of their own feature values and the action which 
was taken, i.e. fold, check/call or bet/raise. CASPER uses 
the k-nearest neighbour algorithm to search the case-base 
and find the most relevant cases, these are then used to 
decide what action should be taken. 
 Casper was implemented using the commercially 
available product Poker Academy Pro 2.53 and the 
Meerkat API. The University of Alberta Poker Research 
Group provides various poker bots with the software 
including instantiations of Pokibot and the simulation 
based bot Simbot. Both Pokibot and Simbot are the result 

 
3 http://www.poker-academy.com/ 

of an intensive knowledge engineering process. These 
poker bots have been used to generate the training data for 
CASPER. Approximately 7000 hands were played 
between various poker bots and each decision witnessed 
was recorded as a single case (or experience) in CASPER’s 
case-base. Both bots have proven to be profitable against 
human competition in the past (Davidson 2002) so it is 
believed that the data obtained is of greater quality then it 
might be from other sources, such as free money games on 
the internet composed of real players. CASPER then reuses 
these recorded instances to make decisions at the poker 
table and therefore bypasses the intensive knowledge 
engineering effort required of other poker-bots. 

5. Case Features  
CASPER searches a different case-base for each separate 
stage of a poker hand (i.e. preflop, flop, turn and river). 
The features that make up a case and describe the state of 
the game at a particular time are listed and explained in 
Table 1. The features listed were chosen by the authors 
because they are believed to capture important information 
needed to make a betting decision. These are the indexed 
features, which means that they are believed to be 
predictive of a case’s outcome and by computing local 
similarity for each feature they are used to retrieve the 
most similar cases in the case-base. The first eight features 
are used in all case-bases, whereas the last four features are 
only used during the postflop stages. Each case is also 
composed of one outcome, which is the betting decision 
that was made.  
 The ‘hand strength’ feature, listed in table 1, differs 
somewhat for preflop and postflop stages of the game. 
During the preflop there exists 169 distinct card groups 
that a player could be dealt. These card groups were 
ordered from 1 to 169 based on their hand ranking, where 1 
indicates pocket Aces (the best preflop hand) and 169 
indicates a 2 and a 7 of different suits (the worst preflop 
hand). Preflop hand strength was then based on this 
ordering, whereas postflop hand strength refers to a 
calculation of immediate hand strength based on the hole 
cards a player has and the current community cards that are 
present. This value is calculated by enumerating all 
possible hole cards for a single opponent and recording 
how many of these hands are better, worse or equal to the 
current player’s hand. Positive potential and negative 
potential are also calculated in this way with the addition 
that all possible future community cards are considered as 
well. For more details on hand strength and potential 
consult (Billings, Davidson et al. 2002; Davidson 2002). 

6. Case Retrieval 
Once a target case has been constructed CASPER needs to 
locate and retrieve the most similar cases it has stored in its 
case-base. The k-nearest neighbour algorithm is used to 
compute a similarity value for all cases in the case-base. 



Each feature has a local similarity metric associated with it 
that evaluates how similar its value is to a separate case’s 
value, where 1.0 indicates an exact match and 0.0 indicates 
entirely dissimilar.  
 Two separate similarity metrics are used depending on 
the type of feature. The first is the standard Euclidean 
distance function given by the following equation: 
 

 ⎟
⎠

⎞
⎜
⎝

⎛ −−= DIFFMAX
xxsi _1 21  (1) 

 
where x1 refers to the target value, x2 refers to the case 
value and MAX_DIFF is the greatest difference in values, 
given by the range in table 1.    
 

Table 1. Preflop and postflop case features. 

  
The above Euclidean similarity metric produces smooth, 
continuous changes in similarity, however, for some 
features, minor differences in their values produce major 
changes in actual similarity, e.g. the ‘Bets to call’ feature. 
For this reason an exponential decay function, given by 
equation (2), has also been used for some features: 
 

  si = e xxk )(
21

−− ,  (2)

       
 
where, x1 refers to the target value and x2  refers to the 
source value and k is a constant that controls the rate of 
decay. 
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Feature: Type: Range: Explanation: 

Number of players int 2 - 10 Number of active players at the beginning of the round 
(preflop, flop, turn or river). 

Relative position double 0.0 - 1.0 
What order the player acts relative to other players at the table. 
0.0 means the player is first to act in the round, 1.0 means the 
player is last to act. 

Players in current hand int 0 - 9 
The number of players that have already acted and are still 
currently in the hand, i.e. players that have checked, bet, 
called or raised. 

Players yet to act int 0 - 9 The number of players that still need to make a future 
betting decision. 

Bets committed double 0.0 - 5.0 

A multiple of the current bet size a certain player has 
committed to the pot. Small bets are used during the 
preflop and flop and big bets are used during the turn 
and river. 

Bets to call double 0.0 - 5.0 

A multiple of the current bet size a certain player has to 
commit to the pot to stay in the hand. Small bets are used 
during the preflop and flop and big bets are used during 
the turn and river. 

Pot Odds double 0.0 - 0.5 The amount to call divided by the amount currently in the 
pot plus the amount needing to be called, a risk/reward measure. 

Hand strength double 0.0 - 1.0 
A numerical measure of the strength of a player's hand. 
0.0 represents the worst possible hand whereas 1.0 
represents an unbeatable hand ("the nuts"). 

    

Positive potential4 double 0.0 - ~0.40 
A numerical measure which represents the chance that a player 
who does not currently hold the best hand will improve to the 
best hand after future community cards are dealt. 

Negative potential4 double 0.0 - ~0.30 
A numerical measure which represents the chance that 
a player currently holding the best hand no longer holds 
the best hand after future community cards are dealt. 

Small bets in pot double 0.0 - ~300.0 The total amount in the pot divided by the value of the 
small bet size. 

Previous round bets int 0 - 5 How many bets or raises occurred during the previous 
betting round. 

    

Action char {f, k, c, b, r} A character representing the decision which was made. 
f = fold, k = check, c = call, b = bet, r = raise. 

4 Not used during the river as there are no further betting rounds.  



 
 Global similarity is computed as a weighted linear 
combination of local similarity, where higher weights are 
given to features that refer to a player’s hand strength as 
well as positive and negative potential. All weights were 
hand picked by the authors and fell in the range of 0 – 100. 
A default value of 5 was used for most features, while 
features we felt were more salient, such as ‘hand strength’ 
and ‘positive and negative potential’, were assigned values 
in the approximate range of 50 - 80. The following 
equation is used to compute the final similarity value for 
each case in the case-base: 
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where xi refers to the ith local similarity metric in the range 
0.0 to 1.0 and wi is its associated weight, in the range 0 – 
100. 
 After computing a similarity value for each case in the 
case-base a descending quick sort of all cases is performed. 
The actions of all cases which exceed a similarity threshold 
of 97% are recorded. Each action is summed and then 
divided by the total number of similar cases which results 
in the construction of a probability triple (f, c, r) which 
gives the probability of folding, checking/calling or 
betting/raising in the current situation. If no cases exceed 
the similarity threshold then the top 20 similar cases are 
used. As an example, assume CASPER looks at his hole 
cards and sees A♥-A♠. After a search of his preflop case-
base the following probability triple is generated:  
(0.0, 0.1, 0.9). This indicates that given the current 
situation CASPER should never fold this hand, he should 
just call the small bet 10% of the time and he should raise 
90% of the time. A betting decision is then 
probabilistically made using the triple which was 
generated. 

7. Results 
CASPER was evaluated by playing other poker bots 
provided through the commercial software product Poker 
Academy Pro 2.5. CASPER was tested at two separate 
poker tables. The first table consisted of strong, adaptive 
poker bots that model their opponents and try to exploit 
weaknesses. As CASPER has no adaptive qualities of his 
own he was also tested against non-adaptive, but 
loose/aggressive opponents. A loose opponent is one that 
plays a lot more hands, whereas aggressive means that they 
tend to bet and raise more than other players. All games 
were $10/$20 limit games which consisted of 9 players. All 
players began with a starting bankroll of $100,000.  
 The adaptive table consisted of different versions of the 
University of Alberta’s poker bots: Pokibot and Simbot. 
Figure 1 records the amount of small bets won at the 
adaptive table over a period of approximately 20,000 

hands. Two separate versions of CASPER were tested 
separately against the same competition. Casper02 
improves upon Casper01 by using a larger case-base, 
generated from approximately 13,000 poker hands. A 
poker bot that makes totally random betting decisions was 
also tested separately against the same opponents as a 
baseline comparison. 
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Figure 1: Casper’s results at the adaptive table. 

 
 While Casper01 concludes with a slight loss and 
Casper02 concludes with a slight profit, figure 1 suggests 
that both versions approximately break even against strong 
competition, whereas the random player exhausted its 
bankroll of $100,000 after approximately 6,000 hands5. 
Casper01’s small bets per hand (sb/h) value is -0.009 
which indicates that Casper01 loses about $0.09 with every 
hand played. Casper02 slightly improves upon this by 
winning approximately $0.04 for every hand played. 
Random play against the same opponents produces a loss 
of $16.70 for every hand played. 
 The second table consisted of different versions of 
Jagbot, a non-adaptive, loose/aggressive rule-based player. 
Figure 2 records the amount of small bets won over a 
period of approximately 20,000 hands. Once again a bot 
which makes random decisions was also tested separately 
against the same competition as a baseline comparison for 
CASPER. 
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Figure 2: Casper’s results at the non-adaptive table. 

 
                                                 
5 Not all data points are shown to improve clarity. 
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 Figure 2 indicates that the first version of Casper is 
unprofitable against the non-adaptive players, losing 
approximately $0.90 for each hand played. Casper02 
shows a considerable improvement in performance 
compared to Casper01. With more cases added to the case-
base, Casper02 produces a profit of +0.03 sb/h, or $0.30 
for each hand played. Once again the random player 
exhausted its initial bankroll after approximately 7000 
hands, losing on average $14.90 for each hand played. 
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Appendix B 
 
Preflop Hand Rankings 
 

 

The following list was used to determine a ‘hand ranking’ feature value during preflop 

play. It lists the preflop hand rankings from highest to lowest. A preflop hand is made 

up of two cards and is described by three characters. The first two characters consist of 

each card’s rank. This is followed by either an ‘o’ for offsuit (meaning both cards are of 

different suits) or an ‘s’ for suited (meaning both cards have the same suit). 

 
1. AAo  31. 7As  61. 8Ao  
2. KKo  32. 5As  62. 55o  
3. QQo  33. TKo   63. 9Jo  
4. JJo  34. 4As   64. 9Qo  
5. KAs  35. 6As   65. 2Ks  
6. QAs  36. TQo   66. 67s 
7. TTo  37. 3As   67. 5Qs  
8. QKs  38. 8Ks   68. 68s  
9. JAs  39. TJo   69. 4Qs  

10. KAo  40. 77o  70. 7Ao 
11. JKs  41. 2As   71. 44o  
12. TAs  42. 8Ts  72. 56s  
13. JQs  43. 8Qs  73. 69s  
14. TKs   44. 7Ks   74. 5Ao  
15. QAo  45. 8Js   75. 6Ts  
16. 99o   46. 89s   76. 6Js  
17. TQs   47. 6Ks   77. 3Qs  
18. TJs  48. 66o   78. 2Qs  
19. QKo   49. 5Ks   79. 57s  
20. 9As  50. 9Ao  80. 4Ao 
21. JAo   51. 78s   81. 45s 
22. 9Ks   52. 4Ks   82. 5Js  
23. 88o   53. 7Qs   83. 6Ao  
24. JKo   54. 7Ts   84. 8Ko  
25. 8As   55. 79s   85. 33o  
26. 9Qs   56. 9Ko   86. 8To  
27. 9Ts   57. 7Js   87. 58s  
28. JQo   58. 3Ks   88. 4Js  
29. 9Js   59. 9To   89. 3Ao  
30. TAo  60. 6Qs  90. 89o 
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91. 22o   121. 29s   151. 47o  
92. 46s   122. 24s   152. 4To  
93. 8Jo   123. 67o   153. 2Jo  
94. 8Qo   124. 3Ko   154. 34o  
95. 3Js   125. 38s   155. 3To  
96. 59s   126. 6Qo   156. 48o  
97. 7Ko   127. 26s   157. 36o  
98. 5Ts   128. 68o   158. 2To  
99. 2Js   129. 23s  159. 49o  

100. 35s  130. 28s  160. 25o 
101. 2Ao   131. 2Ko   161. 39o  
102. 4Ts   132. 56o   162. 37o  
103. 47s   133. 5Qo   163. 24o  
104. 3Ts   134. 69o   164. 29o  
105. 34s   135. 27s   165. 38o  
106. 6Ko   136. 6To   166. 26o  
107. 48s   137. 4Qo   167. 23o  
108. 78o   138. 45o   168. 28o  
109. 2Ts   139. 57o   169. 27o 
110. 36s  140. 6Jo    
111. 5Ko   141. 3Qo     
112. 79o   142. 5Jo     
113. 49s   143. 58o     
114. 7To   144. 46o     
115. 25s   145. 2Qo     
116. 7Qo   146. 4Jo     
117. 39s   147. 59o     
118. 7Jo   148. 35o    
119. 4Ko   149. 3Jo    
120. 37s  150. 5To    
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Appendix C 
 
Glossary of Poker Terms 
 

 

The following is a brief glossary of the poker terms used throughout this thesis. 

For a more detailed list of poker terms consult: 

http://www.pokertips.org/glossary/glossary.php

Or, 

http://www.worldseriesofpoker.com/learn/terms.asp

 

5-card draw: A poker variation where each player is given five cards which they keep 

hidden and no community cards are dealt. Players have one chance to replace any 

number of their five cards with cards from the undealt portion of the deck. 

 

Ante: Each player is forced to contribute a certain amount of chips/cash to the pot. 

 

Bet: When a player bets they willingly add chips/cash to the current pot total. 

 

Big Blind: A forced bet made by one player each round to ensure there is something in 

the pot to play for. The big blind amount is equal to the amount of one small bet. 

 

Blinds: A general term that covers the big and small blinds, which are forced bets. 

 

Call: When a player calls a bet they invest the least amount possible to stay in the 

current hand. 

 

Cash game: A game where players wager with their own funds during each hand, as 

opposed to a tournament where players wager with chips that don’t represent their 
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actual cash value. The blind values don’t change and are usually much lower than the 

average stack of each player. Players may leave the table any time with their 

winnings/losses. 

 

Check: When a player checks they do not invest any funds into the pot, but they are 

still active in the hand.  

 

Chip stack: The amount of chips/cash that a certain player has to wager with at the 

poker table. 

 

Chips: Tokens that represent monetary value. The usual form of currency used for 

betting at the poker table. 

 

Community cards: Cards which are visible to all and all active players share to make 

their best poker hand. 

 

Dealer: During each round one player takes on the status of the dealer. The position of 

the dealer controls the betting order around the table. The dealer is the last player to act 

for all postflop stages in Texas Hold’em. 

 

Flop: The flop is the second stage in the game of Texas Hold’em. During the flop three 

community cards are dealt face up on the table and players combine these cards with 

their two hole cards to make their best five hand combination. This is then followed by 

a round of betting. 

 

Fold: When a player folds they discard their hand and are no longer active in the round. 

 

Heads up: A term used to describe a game of poker where there are only two players. 

 

Hole cards: A player’s private cards which only they can see. 

 

Limit: A term used to indicate that betting is limited to certain amounts. 
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No Limit: In no limit there are no betting restrictions. A player can bet up to the total 

amount they have in their current chip stack. 

 

Postflop: In Texas Hold’em the game is broken up into four stages: the preflop, flop, 

turn and river. Postflop refers to the three stages after the preflop, where community 

cards are drawn during each stage. 

 

Pot: The total amount of chips/cash that is being contested by each active player. 

 

Preflop: The first stage in the game of Texas Hold’em where each player is dealt two 

hole cards and a round of betting occurs. 

 

Raise: When a player raises they invest over and above what is required to stay in the 

hand. All other active players must now match the amount that was raised to continue to 

play. 

 

Ring game: see Cash game 

 

River: The final stage in Texas Hold’em where one final community card is drawn 

followed by a final round of betting. 

 

Showdown: After all betting has ceased all players that are still active in the hand 

reveal their private cards and the player with the highest ranking hand wins the entire 

contents of the pot. If players have equal ranking hands then the pot is split between 

those players.  

 

Small blind: A forced bet made by one player each round to ensure there is something 

in the pot to play for. The small blind amount is equal to half the amount of one small 

bet. 

 

Stack: See chip stack. 

 

Turn: The third stage in the game of Texas Hold’em where one community card is 

dealt followed by a round of betting. 
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Appendix D 
 

Sample Target Cases 
 

 

This appendix provides a collection of target cases that were constructed for 

various hands played by Casper against different types of opponents. Each case lists all 

indexed features and their values as well as the probability triple that was constructed, 

the action taken, the number of cases retrieved and the average similarity of the 

retrieved cases. 

D.1 Computerised Opponents 

D.1.1 Strong/Adaptive Competition 

 
 
 
 
 

Stage:  PREFLOP  Stage:  PREFLOP 
Number of players: 9  Number of players: 9
Relative position: 1.0  Relative position: 0.375
Players in pot: 2  Players in pot: 0
Players to act: 3  Players to act: 7
Small bets committed: 0.0  Small bets committed: 0.0
Small bets to call: 3.0  Small bets to call: 1.0
Pot Odds: 0.315789474  Pot Odds: 0.4
Hand ranking: 106 (6Ko)  Hand ranking: 70 (7Ao)
Probability Triple: (1.0, 0.0, 0.0)  Probability Triple: (0.65, 0.34, 0.01)
Action: Fold  Action: Call
Cases retrieved: 83  Cases retrieved: 100
Average Similarity: 0.975320915  Average Similarity: 1.0
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Stage:  PREFLOP  Stage:  FLOP 
Number of players: 9  Number of players: 2
Relative position: 0.375  Relative position: 0.0
Players in pot: 1  Preflop bets: 3
Players to act: 0  Players in pot: 0
Small bets committed: 1.0  Players to act: 1
Small bets to call: 1.0  Bets committed: 0.0
Pot Odds: 0.181818182  Bets to call: 0.0
Hand ranking: 70 (7Ao)  Small bets in pot: 7.5
Probability Triple: (0.0, 0.876, 0.12)  Pot Odds: 0.0
Action: Raise  Hand strength: 0.692414431
Cases retrieved: 97  Positive potential: 0.070175439
Average Similarity: 0.980626787  Negative potential: 0.143754175
   Probability Triple: (0.0, 0.51, 0.49)
   Action: Bet
   Cases retrieved: 100
   Average Similarity: 0.993235666

 
Stage:  TURN  Stage:  RIVER 

Number of players: 2  Number of players: 2
Relative position: 0.0  Relative position: 0.0
Flop bets: 1  Turn bets: 1
Players in pot: 0  Players in pot: 0
Players to act: 1  Players to act: 1
Bets committed: 0.0  Bets committed: 0.0
Bets to call: 0.0  Bets to call: 0.0
Small bets in pot: 9.5  Small bets in pot: 13.5
Pot Odds: 0.0  Pot Odds: 0.0
Hand strength: 0.576328502  Hand strength: 0.584343434
Positive potential: 0.109697315  Probability Triple: (0.0, 0.82, 0.18)
Negative potential: 0.171569001  Action: Check
Probability Triple: (0.0, 0.46, 0.54)  Cases retrieved: 100
Action: Bet  Average Similarity: 0.997685402
Cases retrieved: 100    
Average Similarity: 0.996149977    

 
Stage:  PREFLOP 

Number of players: 9
Relative position: 0.875
Players in pot: 2
Players to act: 4
Small bets committed: 0.0
Small bets to call: 2.0
Pot Odds: 0.307692308
Hand ranking: 152 (4To)
Probability Triple: (1.0, 0.0, 0.0)
Action: Fold
Cases retrieved: 100
Average Similarity: 0.993812552
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D.1.2 Aggressive/Non-Adaptive Competition 

Stage:  PREFLOP  Stage:  FLOP 
Number of players: 9  Number of players: 4
Relative position: 0.875  Relative position: 0.667
Players in pot: 1  Preflop bets: 2
Players to act: 3  Players in pot: 2
Small bets committed: 0.0  Players to act: 1
Small bets to call: 2.0  Bets committed: 0.0
Pot Odds: 0.363636364  Bets to call: 1.0
Hand ranking: 10 (KAo)  Small bets in pot: 10.5
Probability Triple: (0.22, 0.45, 0.33)  Pot Odds: 0.086956522
Action: Call  Hand strength: 0.400018667
Cases retrieved: 100  Positive potential: 0.080843585
Average Similarity: 0.99660311  Negative potential: 0.128395062
   Probability Triple: (0.46, 0.46, 0.08)
   Action: Call
   Cases retrieved: 100
   Average Similarity: 0.979265465

 
Stage:  TURN  Stage:  TURN 

Number of players: 4  Number of players: 4
Relative position: 0.667  Relative position: 0.667
Flop bets: 1  Flop bets: 1
Players in pot: 2  Players in pot: 2
Players to act: 2  Players to act: 0
Bets committed: 0.0  Bets committed: 1.0
Bets to call: 1.0  Bets to call: 1.0
Small bets in pot: 14.5  Small bets in pot: 22.5
Pot Odds: 0.121212121  Pot Odds: 0.081632653
Hand strength: 0.241461401  Hand strength: 0.387761908
Positive potential: 0.093760913  Positive potential: 0.093760913
Negative potential: 0.147048452  Negative potential: 0.147048452
Probability Triple: (0.44, 0.48, 0.08)  Probability Triple: (0.14, 0.84, 0.02)
Action: Call  Action: Call
Cases retrieved: 100  Cases retrieved: 45
Average Similarity: 0.978368517  Average Similarity: 0.975647445

 
Stage:  RIVER  Stage:  RIVER 

Number of players: 4  Number of players: 4
Relative position: 1.0  Relative position: 1.0
Turn bets: 2  Turn bets: 2
Players in pot: 2  Players in pot: 2
Players to act: 1  Players to act: 0
Bets committed: 0.0  Bets committed: 1.0
Bets to call: 1.0  Bets to call: 1.0
Small bets in pot: 26.5  Small bets in pot: 34.5
Pot Odds: 0.070175439  Pot Odds: 0.054794521
Hand strength: 0.263822314  Hand strength: 0.263822314
Probability Triple: (0.18, 0.77, 0.05)  Probability Triple: (0.25, 0.75, 0.0)
Action: Call  Action: Call
Cases retrieved: 44  Cases retrieved: 4
Average Similarity: 0.975160008  Average Similarity: 0.974936377
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D.2 Real Opponents 

D.2.1 Play Money 

Stage:  PREFLOP  Stage:  PREFLOP 
Number of players: 8  Number of players: 8
Relative position: 1.0  Relative position: 1.0
Players in pot: 2  Players in pot: 4
Players to act: 2  Players to act: 0
Small bets committed: 0.0  Small bets committed: 1.0
Small bets to call: 1.0  Small bets to call: 1.0
Pot Odds: 0.222222222  Pot Odds: 0.1
Hand ranking: 21 (JAo)  Hand ranking: 21 (JAo)
Probability Triple: (0.07, 0.27, 0.66)  Probability Triple: (0.0, 1.0, 0.0)
Action: Call  Action: Call
Cases retrieved: 91  Cases retrieved: 1
Average Similarity: 0.976823051  Average Similarity: 0.971734645

 
Stage:  FLOP 

Number of players: 5
Relative position: 1.0
Preflop bets: 2
Players in pot: 4
Players to act: 1
Bets committed: 0.0
Bets to call: 1.0
Small bets in pot: 13.0
Pot Odds: 0.071428571
Hand strength: 0.117203166
Positive potential: 0.093249102
Negative potential: 0.150092227
Probability Triple: (0.54, 0.45, 0.0)
Action: Fold
Cases retrieved: 11
Average Similarity: 0.978143700
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D.2.2 Real Money 

Stage:  PREFLOP  Stage:  FLOP 
Number of players: 6  Number of players: 5
Relative position: 1.0  Relative position: 1.0
Players in pot: 3  Preflop bets: 2
Players to act: 2  Players in pot: 4
Small bets committed: 0.0  Players to act: 0
Small bets to call: 2.0  Bets committed: 0.0
Pot Odds: 0.210526316  Bets to call: 1.0
Hand ranking: 62 (55o)  Small bets in pot: 16.0
Probability Triple: (0.06, 0.35, 0.05)  Pot Odds: 0.058823529
Action: Call  Hand strength: 0.444177014
Cases retrieved: 20  Positive potential: 0.046011755
Average Similarity: 0.836749143  Negative potential: 0.115127479
   Probability Triple: (0.0, 0.0, 1.0)
   Action: Raise
   Cases retrieved: 1
   Average Similarity: 0.975627976

 
Stage:  TURN  Stage:  PREFLOP 

Number of players: 5  Number of players: 8
Relative position: 1.0  Relative position: 0.714
Flop bets: 2  Players in pot: 2
Players in pot: 4  Players to act: 4
Players to act: 0  Small bets committed: 0.0
Bets committed: 0.0  Small bets to call: 2.0
Bets to call: 1.0  Pot Odds: 0.266666667
Small bets in pot: 30.0  Hand ranking: 5 (KAs)
Pot Odds: 0.0625  Probability Triple: (0.0, 0.18, 0.82)
Hand strength: 0.23745975  Action: Raise
Positive potential: 0.046909091  Cases retrieved: 65
Negative potential: 0.135136835  Average Similarity: 0.978264896
Probability Triple: (1.0, 0.0, 0.0)    
Action: Fold    
Cases retrieved: 1    
Average Similarity: 0.975157071    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 95



Stage:  PREFLOP  Stage:  FLOP 
Number of players: 8  Number of players: 5
Relative position: 0.714  Relative position: 0.75
Players in pot: 4  Preflop bets: 4
Players to act: 0  Players in pot: 3
Small bets committed: 3.0  Players to act: 2
Small bets to call: 1.0  Bets committed: 0.0
Pot Odds: 0.047619048  Bets to call: 1.0
Hand ranking: 5 (KAs)  Small bets in pot: 23.0
Probability Triple: (0.0, 0.1, 0.0)  Pot Odds: 0.041666667
Action: Call  Hand strength: 0.294740859
Cases retrieved: 3  Positive potential: 0.083655536
Average Similarity: 0.977896181  Negative potential: 0.129734254
   Probability Triple: (0.2, 0.8, 0.0)
   Action: Fold
   Cases retrieved: 5
   Average Similarity: 0.974186519
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