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Abstract

The state-of-the-art within Artificial Intelligence has directly benefited from research con-

ducted within the computer poker domain. One such success has been the the advancement of

bottom up equilibrium finding algorithms via computational game theory. On the other hand,

alternative top down approaches, that attempt to generalise decisions observed within a col-

lection of data, have not received as much attention. In this thesis we examine top down ap-

proaches that use Case-Based Reasoning in order to construct strategies within the domain of

computer poker. Our analysis begins with the development of frameworks to produce static

strategies that do not change during game play. We trace the evolution of our case-based ar-

chitecture and evaluate the effect that modifications have on strategy performance. The end

result of our experimentation is a coherent framework for producing strong case-based strate-

gies based on the observation and generalisation of expert decisions. Next, we introduce three

augmentation procedures that extend the initial frameworks in order to produce case-based

strategies that are able to adapt to changing game conditions and exploit weaknesses of their

opponents. Two of the augmentation procedures introduce different forms of opponent mod-

elling into the case-based strategies produced. A further extension investigates the use of trans-

fer learning in order to leverage information between separate poker sub-domains. For each

poker domain investigated, we present results obtained from the Annual Computer Poker Com-

petition, where the best poker agents in the world are challenged against each other. We also

present results against a range of human opponents. The presented results indicate that the top

down case-based strategies produced are competitive against both human opposition, as well

as state-of-the-art, bottom up equilibrium finding algorithms. Furthermore, comparative eval-

uations between augmented and non-augmented frameworks show that strategies which have

been augmented with either transfer learning or opponent modelling capabilities are typically

able to outperform their non-augmented counterparts.
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Chapter 1

Introduction

Many games have successfully (and enjoyably) been used as domains for Artificial Intelligence

(AI) research over the years. Early efforts for games such as chess, checkers, backgammon,

Connect-4, Othello, Lines of Action and Scrabble have produced strong computerised players

and notable success stories [100]. More recently, games such as bridge, Hex, Go and poker have

increasingly been the focus of AI research, so too have modern interactive computer (video)

games such as first-person shooters, role-playing games and real-time strategy games. Jonathan

Schaeffer states in his 2001 article, A Gamut of Games [101]:

Successfully achieving high computer performance in a non-trivial game can be a

stepping stone toward solving more challenging real-world problems.

The use of games as research domains has also played a significant role in the proliferation

of competitions that guide modern AI related research. Beginning with the highly publicised

human vs. machine chess matches between Kasparov and Deep Blue in the 1990s, today, com-

petitions exist for many different games. The International Computer Games Association [51]

presently organises regular Computer Olympiads, where competitions are held for board and

card games such as chess, checkers, bridge and Go. RoboCup [94] is an annual competition for

both simulated and robotic soccer matches. There are also annual competitions for poker [2],

real-time strategy games [22] and general game playing [37]. For the above domains, competi-

tions are successfully used to drive research and improve the state-of-the-art.

Each of the non-trivial games mentioned above share common beneficial properties such as

well defined rules over possible actions and behaviours, the existence of clear goals and objec-

tives, as well as embedded performance metrics. Each particular game also has its own unique,

beneficial properties that make them good research areas. The game of poker has been iden-

tified as a beneficial domain for current AI research [14] due to properties of the game such

13
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as imperfect information – the inability to observe opponents’ cards and chance events – the

random private and public cards that are dealt each hand.

The popularity of poker experienced a massive boom in the early 2000s due to a combina-

tion of factors such as the emergence of online poker, the introduction of hole card cameras

to televised events, as well as an amateur’s unlikely win at the main event of the 2003 World

Series of Poker. The use of poker as an academic research domain has undergone a similar

increase in popularity. The identification of poker as a useful research domain has inevitably

resulted in increased attention from academic researchers and has led to the investigation of

a wide range of new algorithms and approaches. In particular, work done by the University of

Alberta’s Computer Poker Research Group1 (CPRG) and the establishment of annual computer

poker competitions at conferences such as AAAI and IJCAI since 2006, has resulted in the de-

velopment of a large number of computerised poker agents. The vast majority of these poker

agents focus on one particular variant of poker – Texas Hold’em. The Texas Hold’em variation of

poker will be the sole focus of this thesis. Furthermore, previous computer poker research can

roughly be split into two broad categories [14]. The first attempts to analyse smaller isolated

subsets of the problem domain which typically leads to valuable insights about specialised as-

pects of the game. The second category, on the other hand, attempts to tackle the domain as a

whole, resulting in the creation of an agent that is able to play the game autonomously. In this

thesis we will restrict our attention to the second category, i.e. producing autonomous poker

playing agents that tackle the full game of Texas Hold’em and can be evaluated by challenging

human or computerised opposition.

We investigate a novel approach that uses Case-Based Reasoning (CBR) [91, 61, 1] to con-

struct sophisticated strategies in the computer poker domain. The CBR methodology attempts

to solve new problems or scenarios by locating similar past problems and re-using or adapting

their solutions for the current situation. Common game scenarios, together with their playing

decisions are captured as a collection of cases. Each case attempts to capture important game

state information that is likely to have an impact on the final playing decision. We refer to the

strategies produced as case-based strategies. Case-based strategies attempt to generalise game

playing decisions recorded within data via the use of similarity metrics that determine whether

two game playing scenarios are sufficiently similar to each other, such that their decisions can

be re-used. Training data can be both real-world data, e.g. from online poker casinos, or artifi-

cially generated data, e.g. from other poker agents.

The stochastic, imperfect information world of Texas Hold’em poker is used as a test-bed to

evaluate and analyse our case-based strategies. The game of Texas Hold’em presents tremen-

dous challenges for CBR as the environment is stochastic, dynamic, sequential, partially ob-

1http://poker.cs.ualberta.ca/
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servable and may involve multiple adversaries, whereas traditional applications of CBR tend to

take place in static and episodic environments [24, 48, 50]. Texas Hold’em offers a rich environ-

ment that allows the opportunity to apply an abundance of strategies ranging from basic con-

cepts to sophisticated strategies and counter-strategies. In this thesis, we will consider issues

to do with opponent modelling, solution adaptation and dealing with very large, probabilis-

tic solution spaces, which are seldom addressed in CBR research. Moreover, the rules of Texas

Hold’em poker are incredibly simple. Contrast this with CBR related research into complex en-

vironments such as real-time strategy games [4, 81], which offer similar issues to deal with –

uncertainty, chance, deception – but don’t encapsulate this within a simple set of rules, bound-

aries and performance metrics. Successes and failures achieved by applying case-based strate-

gies to the game of poker may provide valuable insights for CBR researchers using complex

strategy games as their domain, where immediate success is harder to evaluate. Furthermore,

it is hoped that results may also generalise to domains outside the range of games altogether

to complex real world domains where hidden information, chance and deception are common

place.

Before detailing the objectives and contributions of this thesis, we present a description of

the rules of Texas Hold’em, followed by a brief overview of the various performance metrics and

evaluators mentioned throughout the document.

1.1. Texas Hold’em

Here we briefly describe the game of Texas Hold’em, highlighting some of the common terms

which are used throughout this work. For more detailed information on Texas Hold’em consult

[111], or for further information on poker in general see [110].

Texas Hold’em can be played either as a two-player game or a multi-player game. When a

game consists only of two players it is often referred to as a heads-up match. Game play consists

of four stages – preflop, flop, turn and river. During each stage a round of betting occurs. The

first round of play is the preflop where all players at the table are dealt two hole cards, which

only they can see. Before any betting takes place, two forced bets are contributed to the pot, i.e.

the small blind and the big blind. The big blind is typically double that of the small blind. In

a heads up match, the dealer acts first preflop. In a multi-player match the player to the left of

the big blind acts first preflop. In both heads up and multi-player matches, the dealer is the last

to act on the post-flop betting rounds (i.e. the flop, turn and river). The legal betting actions

are fold, check/call or bet/raise. These possible betting actions are common to all variations of

poker and are described in more detail below:
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Fold: When a player contributes no further chips to the pot and abandons their hand and any

right to contest the chips that have been added to the pot.

Check/Call: When a player commits the minimum amount of chips possible in order to stay in

the hand and continues to contest the pot. A check requires a commitment of zero further

chips, whereas a call requires an amount greater than zero.

Bet/Raise: When a player commits greater than the minimum amount of chips necessary to

stay in the hand. When the player could have checked, but decides to invest further chips

in the pot, this is known as a bet. When the player could have called a bet, but decides to

invest further chips in the pot, this is known as a raise.

In a limit game all bets are in increments of a certain amount. In a no-limit game a player

may bet any amount up to the total value of chips that they possess. For example, assuming a

player begins a match with 1000 chips, after paying a forced small blind of one chip they then

have the option to either fold, call one more chip or raise by contributing anywhere between 3

and 999 extra chips2. In a standard game of heads-up, no-limit poker both players’ chip stacks

would fluctuate between hands, e.g. a win from a previous hand would ensure that one player

had a larger chip stack to play with on the next hand. In order to reduce the variance that this

structure imposes, a variation known as Doyle’s Game is played where the starting stacks of

both players are reset to a specified amount at the beginning of every hand.

Once the round betting is complete, as long as at least two players still remain in the hand,

play continues on to the next stage. Each post-flop stage involves the drawing of community

cards from the shuffled deck of cards as follows: flop – 3 community cards, turn – 1 community

card, river – 1 community card. All players combine their hole cards with the public community

cards to form their best five card poker hand. A showdown occurs after the river where the

remaining players reveal their hole cards and the player with the best hand wins all the chips in

the pot. If both players’ hands are of equal value, the pot is split between them.

1.2. Performance Metrics & Evaluation

This section will briefly summarise the different types of performance measurements and agent

evaluations that are mentioned in this work. Before evaluating the performance of a system, it

is necessary to consider the different types of strategies that a poker agent may employ.

2The minimum raise would involve paying 1 more chip to match the big blind and then committing at least another
2 chips as the minimum legal raise.
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1.2.1. Types of Strategies

A strategy in this context refers to a mapping between game states and the actions that an agent

will take at that game state. Typically, an agent’s strategy consists of specifying a probability

triple at every game state. A probability triple, (f,c,r), specifies the proportion of the time an

agent will either fold, check/call or bet/raise at a particular point in the game. An agent’s strat-

egy is said to be static when the strategy does not change over the course of the game. A strategy

that does evolve over time is said to be adaptive.

Throughout this work the concept of a Nash equilibrium [73] strategy will be referred to.

A Nash equilibrium is a robust, static strategy that attempts to limit its exploitability against a

worst-case opponent. In general, a set of strategies are said to be in equilibrium if the result of

one player diverging from their equilibrium strategy (while all other players stick to their current

strategy) results in a negative impact on the expected value for the player who modified their

strategy [73]. Given the size of the poker game tree and the limitations of today’s hardware, it

is currently intractable to compute exact Nash equilibria for full-scale Texas Hold’em [55], but

by applying simplifying abstractions to the game it is possible to derive ε-Nash equilibria, or

simply near-equilibrium strategies, where, ε refers to the maximal amount a player can gain by

deviating their strategy.

As an ε-Nash equilibrium strategy assumes an unknown, worst-case opponent it will limit

its own exploitability at the expense of taking advantage of weaker opponents. Hence, while

this sort of strategy may not lose, it will also not win by as much as it could against weaker op-

ponents. On the other hand, a player that attempts to isolate the weaknesses of their opponent

and capitalise on those weaknesses is said to employ an exploitive (or maximal) strategy. This

is typically achieved by constructing a model of an opponent and using it to inform future ac-

tions. An exploitive strategy can be either static or adaptive, depending on how the opponent

model is constructed. A consequence of an exploitive strategy is that it no longer plays near the

equilibrium and hence is vulnerable to exploitation itself, especially if the model of the oppo-

nent is incorrect or no longer valid.

1.2.2. Performance Evaluators

Evaluating the performance of a computer poker agent can be a difficult task due to the in-

herent variance present in the game. Listed below are some of the various methods that have

been used to evaluate the agents we make reference to throughout this work. Measurements

are made in small bets per hand (sb/h), where the total number of small bets won or lost are

divided by the total hands played. For example, assuming a $10/$20 hold’em game, where the
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small bet is $10 and the big bet $20, a value of +0.1 sb/h indicates an average profit of $1 for

each hand played.

Measuring exploitability The goal of computing ε-Nash equilibria is to produce robust poker

agents that can perform well against unknown competition by limiting their own exploitabil-

ity. Here, ε refers to how much an opponent can gain by deviating their strategy. ε can be

analytically computed by deriving a best-response to an agent’s strategy. Given a known,

static strategy a best-response can be calculated by choosing the action that maximises

the expected value against the agent’s strategy, for every game state. Strategies with lower

values of ε allow an opponent to gain less by deviating. Therefore, ε provides a convenient

measure of exploitability that specifies a lower bound on the exploitability of an agent in

the full-scale version of Texas Hold’em.

IRC Poker Server Before the arrival of real-money online poker sites, humans and comput-

erised agents played poker online via an Internet Relay Chat (IRC) poker server. The IRC

poker server allowed players to challenge each other to non-real money games of Texas

Hold’em. Notable early poker agents such as Loki-1, Loki-2, Poki and r00lbot were all evalu-

ated by their performance on the IRC server [17]. While all the games involved play money,

the IRC poker server offered several levels where players were required to earn a certain

amount in lower level games before being allowed access to higher levels. As such the cal-

ibre of opponent in the higher tiered games was usually strong. A consistent profit, over

a large number of hands, in the higher tiered games was most likely an indication of a

strong poker agent.

Poker Academy Poker Academy Pro 2.5 is a commercial software product3 that allows humans

and/or computerised agents to compete against each other by playing Texas Hold’em

poker. Poker Academy provides an API that allows developers to create their own poker

agents and plug them into the software to test their performance. Also provided with the

software are strong poker agents developed by the University of Alberta CPRG including

Poki, Sparbot and Vexbot. Both Sparbot and Vexbot specialise in playing heads-up, limit

hold’em. Sparbot attempts to approach a Nash equilibrium strategy whereas, Vexbot plays

an exploitive strategy. Results that are obtained using Poker Academy typically involve

gauging a poker agent’s performance by challenging Sparbot or Vexbot. As the variance of

Texas Hold’em is large, tens of thousands of hands need to be played to have confidence

in the results.

3Poker Academy Pro 2.5 is no longer available for purchase.
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Annual Computer Poker Competition The Annual Computer Poker Competition4 (ACPC) has

been held each year at either AAAI or IJCAI conferences since 2006. The ACPC involves

separate competitions for different varieties of Texas Hold’em, such as limit and no-limit

competitions, as well as heads-up and multiple-opponent competitions. Since 2009, the

ACPC has evaluated agents in the following variations of Texas Hold’em:

1. Two-player, Limit Hold’em.

2. Two-player, No-Limit Hold’em.

3. Three-player, Limit Hold’em.

Entrance into the competition is open to anyone and the agents submitted typically rep-

resent the current state of the art in computer poker. Agents are evaluated by playing

against each other in a round-robin tournament structure. As poker is a stochastic game

that consists of chance events, the variance can often be large especially between agents

that are close in strength. This requires many hands to be played in order to arrive at sta-

tistically significant conclusions. Due to the large variance involved, the ACPC employs

a duplicate match structure, whereby all players end up playing the same set of hands.

For example, in a two-player match a set of N hands are played, after which the agents’

memories are wiped. This is then followed by dealing the same set of N hands a second

time, but having both players switch seats so that they receive the cards their opponent

received previously. As both players are exposed to the same set of hands, this reduces the

amount of variance involved in the game by ensuring one player does not receive a larger

proportion of higher quality hands than the other. A two-player match involves two seat

enumerations, whereas a three-player duplicate match involves six seat enumerations to

ensure each player is exposed to the same scenario as their opponents. For three players

(ABC) the following seat enumerations need to take place:

ABC ACB

CAB CBA

BCA BAC

The ACPC employs two winner determination procedures:

1. Total Bankroll. As its name implies the total bankroll winner determination simply

records the overall profit or loss of each agent and uses this to rank competitors. In

this division, agents that are able to achieve larger bankrolls are ranked higher than

those with lower profits. This winner determination procedure does not take into

4http://www.computerpokercompetition.org/
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account how an agent achieves its overall profit or loss, for instance it is possible that

the winning agent could win a large amount against one competitor, but lose to all

other competitors.

2. Bankroll Instant Run-Off. On the other hand, the instant run-off division uses a re-

cursive winner determination algorithm that repeatedly removes the agents that per-

formed the worst against a current pool of players. This way agents that achieve large

profits by exploiting weak opponents are not favoured, as in the total bankroll divi-

sion.

Man-Machine Poker Championship Another competition that has been cited in the results of

some of the literature reviewed in this thesis is the Man-Machine Poker Championship.

The Man-Machine Poker Championship is a limit Texas Hold’em competition played be-

tween an agent named Polaris and a selected group of professional human poker players.

Polaris is a suite of state-of-the-art poker agents developed by the University of Alberta

CPRG. Once again a duplicate match structure is used. As it is not possible to erase a hu-

man player’s memory between sets of N hands, a pair of human professionals are used to

challenge Polaris.

1.3. Variance Reduction

Duplicate matches offer a simple and effective procedure for reducing variance, however they

cannot completely eliminate the effects of luck. A further variance reduction technique is the

use of DIVAT analysis. DIVAT (ignorant value assessment tool) [12] is a perfect information

variance reduction tool developed by the University of Alberta CPRG. The basic idea behind

DIVAT is to evaluate a hand based on the expected value (EV) of a player’s decisions, not the

actual outcome of those decisions. DIVAT achieves this by comparing the EV of the player’s

decisions against the EV of some baseline strategy, see Equation 1.1.

EV (ActualActions)− EV (BaselineActions) (1.1)

Equation 1.1 attempts to factor out the effects of luck as both the actual strategy and the

baseline strategy experience the same lucky or unlucky sequence of events. For example, a

player that benefits by a statistically unlikely event no longer makes a difference as the baseline

strategy also benefits by the same improbable event. What actually matters is any difference in

EV the player is able to achieve by varying the actions that they take. When the player is able

to achieve a greater EV than the baseline, the player is rewarded. Alternatively, if the player’s
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actions result in a lower EV then they are punished with a negative outcome. If the EV of both

strategies is the same the outcome is 0.

Any type of strategy can be used as a baseline. Typically, in limit Hold’em a bet-for-value

baseline strategy is adopted. A bet-for-value strategy makes no attempt to disguise the strength

of its hand. By establishing game theoretic equilibrium-based thresholds, a sequence of base-

line betting decisions can be constructed, based on hand strength alone. Strong hands will be

bet and/or raised, whereas weak hands will be checked or folded. In no-limit Hold’em, trivial

check-call or bet-call baseline strategies have mostly been used as they roughly result in the

same variance reduction as more involved no-limit bet-for-value strategies [104].

The EV, from Equation 1.1, refers to the average amount a player can expect to win given

the current game state. The current game state is described by things such as each player’s hole

cards, the current round, the community cards and the amount of money in the pot. However,

EV can also be influenced by less obvious factors such as the type of player the opponent is

and any previous history between the two players which affects the player’s beliefs about each

other. For these reasons EV is approximated by a concept known as pot equity or all-in equity.

To determine all-in equity in a two-player Hold’em match, both player’s hole cards need to be

known. A player’s all-in equity is given by multiplying the current amount in the pot by the

probability that the player will win the hand. On the last game round the probability that the

player will win is either 0 or 1. For intermediate rounds the probability that the player will win is

determined by enumerating all possible combinations of the remaining community cards and

counting the number of times the player’s hand wins, loses and ties. All-in equity is computa-

tionally efficient as it makes the basic assumption that a player’s equity is given by the current

pot size and does not attempt to predict what the final pot size might have been had future

betting occurred. On the other hand, rollout equity is a more computationally intensive calcu-

lation that does attempt to simulate betting on future rounds to more accurately measure the

final pot size.

1.4. Thesis Objectives

The focus of this thesis is on the construction, maintenance and analysis of case-based strate-

gies in the domain of computer poker. The case-based strategies produced are based on expert

imitation, where the game playing decisions of a single expert are observed and recorded and

the resulting traces are then used to construct an agent that attempts to imitate the original ex-

pert’s style of play. We investigate static strategies, which remain unchanged once computed,

as well as adaptive strategies that react to changing game conditions. Furthermore, we address

the issue of exploitability by constructing and evaluating both non-exploitive and exploitive
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strategies, i.e. strategies that take the opponent into consideration and attempt to capitalise on

any weaknesses they reveal.

The first objective of this research is to determine the requirements of using case-based

reasoning to construct strategies in the computer poker domain. This involves investigating

the appropriate architectural and design decisions necessary to appropriately handle a com-

plex environment that consists of one or more competing adversaries, chance and imperfect

information, as well as deception and bluffing. By identifying the appropriate architectural

requirements our objective is to construct and integrate the necessary components to create

a framework for producing strong computer poker players that use the case-based reasoning

methodology. We wish to construct frameworks that will produce strategies that are able to

challenge opponents in multiple poker domains. The agents produced should have the ability

to handle both limit and no-limit betting structures, as well as single and multiple opponents.

We address questions such as how closely the case-based strategies produced can approxi-

mate the strength of the original expert used to train the system. Furthermore, we investigate

framework alterations and approaches, which allow the strategies produced to not be restricted

by the quality of the original experts’ decisions. In so doing, we address whether case-based

strategies have the ability to actually outperform the original expert used to train the system.

A further objective of this research is to apply the principles and techniques of case-based

reasoning to derive exploitive behaviour. We wish to produce case-based strategies that are able

to identify weaknesses in their opponents play and have the capability to capitalise on those

weaknesses. In order to do this, opponent modelling procedures will need to be investigated

and decisions made about how best to integrate opponent modelling capabilities into a case-

based framework.

Throughout this thesis, the emphasis will be on constructing agents that are able to play the

complete game of poker autonomously at an expert level. The final objective is to thoroughly

evaluate the efficacy of all case-based strategies produced by challenging them against both

computerised agents, as well as human opposition. This requires having to overcome the in-

herent variance associated with the domain of poker, so that accurate assessments can be made

about the quality of the strategies produced.

1.5. Thesis Contributions

The four major contributions made by this thesis are as follows:

1. A comprehensive review of the major approaches previously investigated in the domain

of computer poker, together with a survey of the world-class computerised agents these

approaches have produced.
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2. Development and analysis of frameworks for producing non-exploitive, static case-based

strategies via expert imitation in three poker sub-domains.

3. The development and experimental evaluation of two novel opponent modelling proce-

dures, which integrate with and extend the basic frameworks to allow the construction of

exploitive case-based strategies:

• The first opponent modelling procedure produces static, exploitive case-based strate-

gies via implicit opponent modelling and decision combination.

• The second opponent modelling procedure results in the construction of dynamic,

exploitive case-based strategies via explicit opponent modelling and solution adap-

tation.

4. An investigation into the efficacy of transfer learning via the mapping and re-use of case-

bases between separate sub-domains.

1.6. Thesis Outline

This thesis is structured as follows. Chapter 2 provides the necessary background required by

this thesis together with a comprehensive review of the algorithms and approaches that have

previously been investigated within the increasingly popular domain of computer poker. Af-

ter a thorough examination of related approaches we introduce our novel approach within the

computer poker domain in Chapter 3. We begin with the application of case-based reasoning

to three poker sub-domains that each provide unique challenges:

1. Two-Player, Limit Texas Hold’em

2. Two-Player, No-Limit Texas Hold’em, and

3. Three-Player, Limit Texas Hold’em

Within each of the above domains a framework is established for producing strong, sophis-

ticated case-based strategies. The final frameworks presented are the product of an iterative

period of maintenance, where modifications in performance have been closely measured. We

detail the maintenance that has taken place and provide empirical evidence to justify the de-

sign decisions of our final frameworks. A reasonable criticism of imitation-based strategies

described in Chapter 3 is that they will never out-perform the original experts that were used to

train the system in the first place. Chapters 4, 5 and 6 address this criticism by extending the ba-

sic frameworks introduced in order to improve performance. Three approaches for augmenting

the initial frameworks are introduced and evaluated. In particular, Chapter 4 investigates the
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use of implicit opponent modelling to produce static, exploitive case-based strategies, which

combine decisions retrieved from multiple case-bases trained on the actions of a collection of

experts. Chapter 5 extends the underlying frameworks from Chapter 3 with explicit opponent

modelling. Here, experimental results and analysis is provided for exploitive and adaptive case-

based strategies produced via the use of solution adaptation. The final augmentation proce-

dure, which employs transfer learning to re-use learning between poker domains is described

and evaluated in Chapter 6. We provide conclusions and directions for future research in Chap-

ter 7.



Chapter 2

Computer Poker: Agents and

Approaches

1This chapter provides the necessary background required for this thesis and reviews related

approaches that construct artificially intelligent computer poker players which have been pre-

viously investigated. Each approach presented within this chapter will roughly follow the same

pattern. First, the approach is introduced, typically followed by an example. Next, a survey of

the autonomous agents that have employed the above approach to play Texas Hold’em is pre-

sented, along with a discussion of the agent’s performance. Section 2.1. begins with a review of

early work on knowledge-based poker agents, followed by section 2.2. which introduces Monte-

Carlo simulation. Section 2.3. focuses on ε-Nash equilibrium based agents produced via both

linear programming and state-of-the-art iterative algorithms. Section 2.4. reviews exploitive

agents that attempt to adapt to their opponents’ playing style by constructing accurate oppo-

nent models and section 2.5. briefly reviews some alternative approaches that have received

attention in the literature, such as Bayesian poker and evolutionary algorithms.

2.1. Knowledge-Based Systems

The first approach that we review is that of knowledge-based systems. Knowledge based sys-

tems require experts with domain knowledge to aid the design of the system. Knowledge-based

applications for Texas Hold’em that have been implemented and investigated in the past typi-

cally fall into two broad categories: rule-based expert systems and more general formula-based

1The contents of this chapter originally appeared in the journal Artificial Intelligence. Jonathan Rubin and Ian Wat-
son. Computer poker: A review. Artificial Intelligence, 175(5-6):958-987 (2011)[95]

25
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Action preflopAction(Hand hand, GameState state){

if( state.betsToCall > 2 &&

state.opponentsInHand > 1 &&

state.relativePosition > 0.8 &&

hand.AAo){

return getAction(new Triple(0.0, 0.05, 0.95));

} else if...

}

Figure 2.1: A hypothetical rule within a knowledge-based system for Texas Hold’em.

methods. Both are briefly summarised below, before reviewing the agents that apply these ap-

proaches.

2.1.1. Rule-Based Expert Systems

A simple rule-based expert system consists of creating a collection of if-then rules for vari-

ous scenarios that are likely to occur. An example of a possible rule that might be used in

a rule-based expert system for Texas Hold’em is depicted in Figure 2.1. In this example, a

rule is created for the preflop round where the agent holds a pair of Aces (the best starting

hand possible). The rule also specifies various other conditions that must be satisfied about

the game state before it becomes activated, for instance there must be more than one op-

ponent already involved in the hand (state.opponentsInHand > 1), the agent must be in late

position (state.relativePosition > 0.8) and must call more than two bets to stay in the hand

(state.betsToCall > 2). The result of satisfying all these conditions is the generation of a proba-

bility triple. The example in Figure 2.1 produces a triple that indicates the agent should never

fold in this situation and they should call 5% of the time and raise the remaining 95%. A betting

action is then probabilistically chosen based upon this distribution.

2.1.2. Formula-Based Strategies

A more generalised system, similar to a rule-based system, uses a formula-based approach. A

formula-based approach can roughly be characterised as accepting a collection of (possibly

weighted) inputs that describe salient information about the current game state. The formula

then outputs a probability triple and a betting decision is made by randomly selecting an action

based upon the values provided in the triple.

Typically the inputs accepted by a formula-based system revolve around a numerical repre-

sentation of hand strength and pot odds [28, 17]. Various methods are available for computing

hand strength [28, 12], some of which are mentioned below.
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Hand Strength Computations

Enumeration techniques can be used to calculate the immediate hand rank (IHR) of a postflop

hand [28]. Given a pair of hole cards and the public community cards, the IHR can be com-

puted by ranking the hand relative to the entire set of all possible hands a random opponent

may have. Combining all possible two card combinations of the remaining cards in the deck

with the known community cards results in the set of all possible hands the opponent may

have. Counting the number of times the hand wins, loses and ties against this set of all possi-

ble opponent holdings gives the IHR. Treating ties as one half, the formula for IHR is given as

follows:

IHR = (wins+ (ties/2))/(wins+ ties+ losses) (2.1)

Calculating IHR is fast and can easily be computed in real time. On the flop there are
(
47
2

)
=

1081 possible opponent holdings to consider,
(
46
2

)
= 1035 on the turn and

(
45
2

)
= 990 on the

river.

As an example, consider player A has the hole cards T♣ J♣ and the flop cards are 2♦ T♠ K♥.

Out of the 1081 possible opponent holdings, player A will win 899 times, tie 6 times and lose the

remaining 176 times, giving an IHR of: (899 + 6/2)/(899 + 6 + 176) = 0.834413.

The example above assumes a uniform distribution over the cards the opponent could be

holding, however this assumption is usually not correct as players will typically fold weaker

hands before the flop and will therefore hold stronger hands post flop. To improve the hand

strength calculation the opponent’s set of possible two-card combinations can be weighted to

reflect the likelihood of holding a particular combination of cards at a specific point in the hand.

This more informed immediate hand strength (IHS) metric allows beliefs about opponents to

be directly incorporated into the hand strength calculation.

The immediate hand rank/strength described above provides a measure of hand strength at

the current point in the hand, but makes no considerations for future community cards to be

dealt. A separate measure, hand potential [28], can be used to compute the positive or negative

effect of future community cards. Positive potential gives the probability of currently holding an

inferior hand, but improving to the best hand with future community cards. Conversely, nega-

tive potential computes the probability of currently holding the better hand, but falling behind

with future cards. Effective hand strength (EHS) [17, 28] combines the results of immediate hand

strength and positive potential:

EHS = IHS + (1− IHS)× PositivePotential (2.2)
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Alternatively, potential can be directly factored into the hand strength calculation by first

performing a roll-out of the remaining community cards followed by an enumeration of all

possible opponent holdings after all community cards are known. Computing the average out-

come for every possible roll-out combination gives the 7-card Hand Strength (7cHS) [56].

Pot Odds

A further input typically considered within a formula-based approach are the pot odds. The

pot odds give a numerical measure that quantifies the return on investment by contrasting the

investment a player is required to make to stay in the hand, given the possible future rewards.

The equation to calculate pot odds is as follows:

PotOdds =
c

p+ c
(2.3)

where, c is the amount to call and p is the amount currently in the pot. The pot odds can be

used to determine the correctness of committing further chips to a pot. For example, if there

is currently $60 in the pot and a player needs to call a bet of $20 to stay in the hand, the pot

odds are 0.25. This means the player needs to have better than a 25% chance to win the hand to

correctly call the bet.2

2.1.3. Knowledge-Based Poker Agents

We now review a collection of agents, found in the literature, that have applied the knowledge-

based approaches described above to produce systems that play Texas Hold’em poker.

One area where rule-based expert systems commonly appear is in preflop play. Due to the

restricted problem size during preflop play, a rule-based expert system (of reasonable size) can

be sufficient to handle the preflop stage of play independently. There have been several poker

agents that separate the preflop and postflop implementation in this way, including [13, 17, 69].

Hobbyist, Greg Wohletz developed an agent named r00lbot that competed on the early IRC

poker server. r00lbot’s preflop play was determined by a rule-based system based upon de-

tailed guidelines for preflop play published by notable poker authors David Sklansky and Mason

Malmuth in [111], where they identify and rank various equivalence classes of starting hands.

[17, 28] used preflop roll-out simulations to determine the income rate of various starting hands

and built a preflop rule-based system around the results. They report that the results of the roll-

out simulations were strongly correlated with the ranked equivalence classes specified by [111].

2Note this example uses immediate pot odds, a further concept in poker known as implied pot odds also considers
the value of possible future bets in the situation where the player does improve, however this is not easily calculated.
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Turbo Texas Hold’em [121] is a commercial software product that identifies a vast number of

possible scenarios and encodes these decision points within a knowledge-based system. Even

considering the large scope of the project, [11] still reports that the system is easily beaten by

mediocre competition after initial exposure.

For his masters thesis project Follek [35] developed SoarBot, a rule-based expert system for

multi-player, limit Texas Hold’em, built upon the SOAR rule-based architecture [63]. Overall,

Follek reports that SoarBot’s play was mediocre, stating [35]:

It played much better than the worst human players, and much worse than the best

human and software players.

Early agents produced by the University of Alberta CPRG that use knowledge-based ap-

proaches include the first version of Loki [85, 13] and the formula-based version of Poki [28, 17],

which was a re-write of the original Loki system. Poki uses opponent modelling techniques and

a formula-based betting strategy that accepts effective hand strength as its main input and pro-

duces a probability triple as output. The formula-based Poki achieved consistent profit in the

higher tiered, limit hold’em games on the early IRC poker server [17]. Furthermore, a mem-

ber of the Poki family of agents achieved first place at the 2008 ACPC 6-Player limit hold’em

competition [2].

More recently [69] compared and contrasted a knowledge-based implementation (Phase 1),

with a more sophisticated (Phase 2) implementation based on imperfect information game tree

search (see section 2.4.). McCurley [69] designed the system to play the no-limit, heads up

variation of Texas Hold’em and tested it against human opponents on an online poker site.

While testing of the system was limited, the results reported that the Phase 1 implementation

lost to the human opponents, whereas the Phase 2 implementation was profitable.

While knowledge-based systems provide a simplistic framework for implementing com-

puter poker agents, their various short-comings have been identified and highlighted in the

literature cited above. To begin with, knowledge-based systems require a domain expert to en-

code their knowledge into the system which can itself be a challenging problem (i.e. the knowl-

edge elicitation bottleneck). As the system evolves, with the addition of further information and

improvements, it soon becomes difficult to maintain [15] and can easily lead to conflicting in-

formation and performance degradation. Furthermore, any kind of system defined on static

expert knowledge is likely to produce a rigid strategy that is unable to adapt to changing game

conditions and hence, will be exploitable by any observant opposition [16]. In general, there

exist too many scenarios in the complete game of Texas Hold’em for a rule or formula-based

system to identify and handle, which results in too many dissimilar situations being merged

together and handled in a similar manner. Rather, what is preferable is a dynamic, adaptable

system where advanced strategies and tactics are an emergent property of the approach itself.
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2.2. Monte-Carlo and Enhanced Simulation

2.2.1. Introduction

Dynamic search of a state space usually offers an advantage over the static knowledge-based

approaches mentioned in section 2.1.. A typical game tree search, such as minimax search with

alpha-beta pruning [57], involves exhaustively searching the breadth of a tree until a certain

cut-off depth is reached. Nodes on the frontier of the cut-off depth are then assigned values

by some evaluation function and these values are backpropagated to the intermediate nodes of

the tree. This type of game tree search works well for games of perfect information, but fails for

games involving imperfect information as the missing information ensures that the exact state

of the game cannot be known.

An alternative search procedure, known as Monte-Carlo simulation [70], involves drawing

random samples for choice nodes in the game tree and simulating play until a leaf node is

reached, at which point the payoff value is known. By repeating this procedure many times, the

average of the expected values eventually converge to a robust evaluation value for intermediate

nodes in the game tree. Therefore, instead of completely searching the game tree until a certain

cut-off depth and estimating payoff values, a particular line of play is repeatedly selected and

searched to the leafs of the tree, until the average of the known payoff values approximate the

true value of intermediate nodes.

Before being applied to poker, Monte-Carlo simulation was successfully used in games that

involve chance events, such as backgammon [114], as well as games that involve imperfect in-

formation such as Scrabble [108] and bridge [47].

2.2.2. Simulation Example

The following example describes the simulation process as applied to the game of Texas Hold’em

poker. Figure 2.2 depicts three hypothetical trials within a simulation. The known information

at the beginning of each trial is as follows:

1. There are two players in the hand after the preflop betting.

2. The small bet is $10 and the big bet is $20.

3. The community cards on the flop are: 2♦ T♥ 5♣

4. Player A’s personal cards are: A♦ K♠

5. Player A is first to act and wishes to determine the expected value of either checking (k) or

betting (b).
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Figure 2.2: Three hypothetical trials within a simulation. Each trial contributes to the final
estimation of the EV for checking or betting. The betting decisions are as follows: k - check, b -
bet, f - fold, c - call, r - raise.
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In order to estimate the expected values for either checking or betting on the flop, player A

must simulate out the rest of the hand by making predictions about what hand the opponent

may have, as well as their own future betting actions, the opponent’s future betting actions and

any future community cards yet to be dealt. Referring back to Figure 2.2 each trial continues as

follows:

1. Player A predicts what hand player B may have at this point in the game and assigns this

hand to player B. In Figure 2.2, player B’s predicted hand is listed in the bottom right hand

corner of the box located at the root of each tree, e.g. for trial 3 player A predicts B holds a

pair of eights3.

2. Separate simulations are conducted to estimate the EV for checking/calling and betting/raising.

The expected value of a fold is always set to zero and player A contributes no future bets

to the pot when they fold.

3. Player A then predicts future betting actions for itself and its opponent by generating a

probability triple at each decision node and then randomly selecting a betting action

based on this triple. In Figure 2.2, where a node is labelled ‘A’, player A predicts its own

future action and where a node is labelled ‘B’ player A makes a prediction about the op-

ponent’s betting decision. The bold edges represent the predicted actions made during

the simulation.

4. Where a further community card is required, player A randomly selects this card from the

set of possible remaining cards. For example, in trial 2 player A has randomly selected the

T♦ as the turn card and in trial 3, player A has randomly selected the A♠ as the turn card

and the 4♦ as the river card.

5. Finally, given the above information, a numerical value for the trial can be determined at

either the fold or showdown nodes depending on how much money player A has won or

lost during the trial. For example, in trial 2 when player A decides to check they lose no

money as they predict folding to player B’s bet. However, in the same trial, the outcome of

a betting decision on the flop is to lose $30 as player A has predicted they will bet on the

turn and then fold to player B’s raise.

As mentioned above, each trial contributes an estimate for the expected value of check-

ing/calling as well as the expected value of betting/raising at a certain point in the match. As

the number of trials increase the average of the EV will eventually converge to a stable set of val-

ues. This could involve hundreds or even thousands of trials. Furthermore, the more accurate

3In the diagram a player’s hand is identified by first listing the ranks of both hole cards followed by either an s, if the
cards are of the same suit, or an o, if the cards are offsuit.
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the predictions that player A makes about the strength of player B’s hand and the future betting

decisions, the more accurate the final EVs will be. Typically, the action with the greatest EV is

then chosen as the appropriate move for player A.

Finally, Figure 2.2 depicts the nature of the search conducted via Monte-Carlo simulation.

Rather than exhaustively examining every node in the game tree to a certain depth, a specific

line of play is investigated by selectively expanding certain nodes in the tree until the leafs are

reached. This specific line of play is illustrated by following the bold edges through the game

tree in each trial. A thorough search of the game tree is ensured by performing many trials

within the simulation.

2.2.3. Simulation-Based Poker Agents

One of the earliest simulation-based “bots” that played on the IRC poker server was Greg Wohletz’s

r00lbot. During postflop play r00lbot typically conducted around 3000 trials by simulating the

hand out to the showdown, against N random opponent holdings, to determine the likelihood

of winning. This information was then used to select a betting action.

Another early poker agent that played over IRC was Loki, which was developed by the Univer-

sity of Alberta CPRG to play limit Texas Hold’em against multiple opponents. Loki-1 originally

used a formula-based evaluation function to determine its betting strategy [85, 13]. Improve-

ments to the Loki-1 system resulted in a new system, Loki-2, that augmented the static evaluation

function with simulation to better determine the expected value of check/call and bet/raise de-

cisions [15, 16, 23].

Billings et al. [15] label their approach selective-sampling simulation, as opposed to Monte-

Carlo simulation, due to the selective bias introduced when choosing a random sample at a

choice node. Rather than assigning an opponent random hole cards during a simulation, a

weight table is maintained and updated for each opponent after every observable action. Each

weight table contains an entry for every possible hole card combination that the opponent may

hold e.g. AKs, 89s, QQo etc. The weight assigned to each entry represents the possibility of the

opponent playing the hand in the observed way to a specific point in the game. These weights

are then used to bias the distribution used for sampling during a simulation.

Self-play experiments between Loki-1 and Loki-2 highlighted a significant difference in earn-

ings between the two agents, with Loki-2 typically earning 0.05 sb/h more, on average, than

Loki-1 [15]. Loki-2 also appeared to do better than Loki-1 against human competition on the

early Internet Relay Chat (IRC) poker server, where both humans and agents could compete for

play money stakes [15]. The apparent success of the selective-sampling simulation-based ap-

proach led the University of Alberta CPRG to advocate the method as a general framework to be

used for games that involve chance events and imperfect information [15, 16, 17].
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Loki was later re-written and renamed Poki [28, 17]. Once again Poki consisted of a Formula-

Based Strategy (FBS) and a Simulation-Based Strategy (SBS). The system was also improved with

better opponent modelling capabilities and an updated re-weighting method [28, 29]. Analysis

reported by Davidson [28] reiterated earlier findings [15] about the emergence of sophisticated

plays, such as check-raising, that were witnessed using strategies produced by SBS-Poki. How-

ever, the overall results of comparison between FBS-Poki and SBS-Poki were less convincing.

While SBS performed better at introductory levels on the IRC poker server, the same was not

true at higher levels where the calibre of opponent was typically a lot stronger. Furthermore, an

experiment conducted by [28] showed that SBS-Poki performed a lot worse than FBS-Poki when

challenging human opponents at heads-up play. These results led Davidson to remark [28]:

It was expected that the SBS would be far superior to the FBS system, but to date,

this has not been demonstrated.

It was observed that SBS-Poki played too tight in heads-up play, folding many hands. Con-

versely, SBS-Poki was too aggressive in full, 10-player matches, raising and re-raising a lot. David-

son [28] identifies several possible scenarios that cause the expected values generated to be

inaccurate due to small biases introduced during simulation. The behaviour observed during

heads-up matches is roughly due to SBS-Poki falling into a cycle of folding behaviour. When

simulating future actions SBS-Poki predicts itself folding too often – this causes the EVs gener-

ated to become negative. Once the EVs for calling or raising are less than 0, SBS-Poki simply

decides to fold. Moreover, after making the decision to fold, SBS-Poki needs to update its own

model of itself, which ensures that given similar future situations it will again predict itself fold-

ing during the simulations. On the other hand, during full table play SBS-Poki acts too aggres-

sively. During simulations SBS-Poki predicts its opponents calling and raising too often, which

increases the amount of value in the pot, this gives SBS-Poki the right odds to stay in the hand

even with a moderate strength hand. So, SBS-Poki is observed calling and raising too often with

mediocre hands. Davidson concludes that a better, more robust method of game tree search4

is required that is not as sensitive to bias as selective-sampling simulations are. Billings [11]

also questions whether full-information simulations are appropriate for decision making in an

imperfect information environment, i.e. rather than making future decisions based purely on

what cards it is believed an opponent may hold, what is actually required is a solid, objective

decision due to the unknown information.

Despite the mixed results presented for simulation based betting strategies by [28] and [11],

there have been other efforts, outside of the University of Alberta CPRG, to develop poker agents

based on Monte-Carlo Simulation. AKI-RealBot [105] is a Monte-Carlo based exploitive poker

agent that was the second place finisher in the 6-Player limit hold’em competition at the 2008
4The new method proposed is miximax and miximix search discussed in section 2.4.1..
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ACPC. AKI-RealBot uses a similar simulation procedure as described above, but augments the

result of the simulations with a post-processing decision engine that makes it more likely for

AKI-RealBot to get involved in a pot with a player who is considered weak. A player is considered

weak if they have lost money to AKI-RealBot over the course of the last 500 hands. The post-

processing procedure used by [105] decreases the likelihood of AKI-RealBot folding to this player

preflop, even if the EV for folding indicates this is the correct decision. An analysis of the 2008

AAAI competition results show that AKI-RealBot’s success was largely due to its ability to exploit

one weak opponent. So, while it lost to 3 out of the 6 agents, it made up for these losses by

exploiting the weak agent by much more than any of the other competitors [2].

A recent algorithm that makes use of Monte-Carlo simulations is Monte-Carlo Tree Search

(MCTS) [25]. MCTS combines the evaluation information returned via Monte-Carlo simula-

tions with game tree search. An initial game tree, consisting only of the root, is built up through

repeated simulations. Each node in the game tree records information such as expected value

and the number of visits to the node. The consequence of each successive simulation is the

addition of a node to the game tree, along with updates to its associated values. The effective

result is the use of simulation to inform the construction of a game tree via iterative deepening

that reduces the probability of exploring ineffective lines of play. MCTS requires a selection pol-

icy that controls the exploration/exploitation trade-off for nodes in the currently generated tree

(e.g. the UCT heuristic [58]) as well as a backpropagation policy that controls the value updates

for nodes in the tree (typically the average or maximum expected values of the node’s children).

The use of MCTS resulted in performance breakthroughs for the the game of Go [25]. Stan-

dard alpha-beta search procedures failed in the domain of Go due to the game’s massive branch-

ing factor, whereas the ability of MCTS to identify sub-optimal branches and concentrate efforts

on sampling only promising branches is considered to be one of the main reasons for its suc-

cess.

Van den Broeck et al. [115] have recently applied MCTS to the game of no-limit Hold’em.

Van den Broeck et al. [115] construct an offline non-player specific opponent model by learn-

ing a regression tree from online poker data. During simulations the model is used to predict

action and hand rank probabilities for specific opponents. Van den Broeck et al. [115] exper-

iment with novel selection and backpropagation strategies that take into account information

about the standard error over the sampling distribution. The result is an exploitive Hold’em

agent constructed via MCTS that is able to challenge multiple opponents and handle a no-limit

betting structure. Van den Broeck et al. [115] present results that indicate the MCTS agent was

able to successfully exploit naive, non-adaptive rule-based players.
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2.3. Game Theoretic Equilibrium Solutions

The next approach we review considers the computation of equilibrium solutions using game

theoretic principles. We start by introducing the field of game theory. An example, using the

game of Rock-Paper-Scissors is described and the concept of an equilibrium solution is ex-

plained. Approaches to computer poker that attempt to derive near-equilibrium solutions us-

ing game theory are then surveyed and evaluated.

2.3.1. Game Theory Preliminaries

The field of game theory provides analytical tools to study situations where multiple agents

compete and interact within a particular environment [83, 73]. Agents have individual goals

and objectives that they try to achieve. Typically, a game will involve the following components

(replicated from [73]):

• A finite set of players.

• A finite set of moves each player can make at specific points in the game.

• A numerical payoff that is assigned to each player once the game is finished. A payoff

could be either a negative value (a loss), positive (a gain), or 0 (a draw).

In addition to the above components, a game can also consist of:

• Chance events, such as the flip of a coin or the drawing of a card from the deck.

• Hidden information, i.e. information that is not available to a player at the time that they

make their move.

2.3.2. Rock-Paper-Scissors Example

A game, as described above, can be represented either by rules, as a tree or as a matrix. Fig-

ure 2.3 illustrates the game tree for the simple game of rock-paper-scissors. When a game is

represented as a tree it is said to be in extensive form.

Figure 2.3 depicts the game tree for a two-person game of rock-paper-scissors. The two

players are referred to as player A and player B in the tree. Where a node is labelled with an

A, this node is said to be owned by player A and where a node is labelled with a B, the node is

owned by player B. Each player has a choice of three moves that they can choose, either rock,

paper or scissors, represented as the edges in the tree labelled with R, P or S, respectively. The

rules of the game state that rock beats scissors, paper beats rock and scissors beats paper. If

both players make the same choice then the game is a tie. As a win for one player results in
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Figure 2.3: The game of Rock-Paper-Scissors represented as a tree.

a corresponding loss for the other player, this type of game falls under the category of a two-

person, zero-sum game.

A and B choose their moves simultaneously. Once each player has made their decision they

make their choice known to their opponent. To represent this in the game tree of Figure 2.3, you

can imagine player A first makes their move and whispers it to an independent third party, then

B makes their move and also makes their choice known to the third party. The third party then

determines the outcome of the game. The fact that B does not know which move A has chosen is

represented by the grey background that surrounds the nodes that belong to B. In game theory,

this is known as an information set. At this point in the game, B knows that they are at one of the

three nodes in the information set, but they don’t know exactly which node it is. If they did then

B would have perfect information of the game, however B doesn’t know which move A made,

hence they have imperfect information of the game, represented by the information set.

The leafs of the tree correspond to the conclusion of the game. Each leaf is labelled with two

values that represent the payoff to each player. The upper payoff value belongs to player A and

the bottom value belongs to player B. For example, if A chooses paper and B chooses paper the

payoff is 0 for each player, i.e. it’s a draw. If however, A chooses paper and B chooses rock the

payoff is now +1 for A and -1 for B.

This payoff information can be represented in matrix form. Figure 2.4 shows the payoff

matrix for player A. When a game is represented in this way it is said to be in normal form. In

Figure 2.4, each row of the matrix has been labelled with a strategy that A could select and each

column represents a strategy for B. A strategy can be thought of as specifying a move for every

possible game state a player may encounter. Referring again to the game tree in Figure 2.3,

there is only one node where player A is required to make a move, i.e. the root node. At this

node A has the choice of three moves R, P, S. This gives a total of 3 strategies for player A. On

the other hand, B owns 3 nodes in the game tree, however as these nodes all belong to the same
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
R P S

R 0 −1 1
P 1 0 −1
S −1 1 0


Figure 2.4: The game of Rock-Paper-Scissors represented as a matrix.

information set, the move that B makes at each node must be the same, e.g. B cannot choose P

at the first node, S at the second node and R at the third node as this assumes B has access to

hidden information. So, B also has only three strategies to play in total.

These 3 strategies are known as pure strategies. If A always played rock, B would eventually

pick up on this and could play paper to win every time. On the other hand, a mixed strategy is

one which assigns a probability value to each pure strategy, e.g. A may play rock 80% of the time,

paper 10% of the time and scissors 10% of the time. Different combinations of probabilities will

result in different expected values for each player.

A pair of mixed strategies is said to be in equilibrium if the result of deviating from one of

the strategies, while holding the other constant, results in a loss in expected value for the player

who changed strategies. In other words, given a pair of equilibrium strategies, no player can do

any better by choosing a different strategy as long as the other player sticks to the equilibrium

strategy. For two-person, zero-sum games, such as the rock-paper-scissors game we have de-

scribed, an equilibrium strategy, also known as a Nash equilibrium, is generally considered a

solution to the game [73]. Finding a Nash equilibrium is equivalent to determining the optimal

combination of probability values that make up a mixed strategy. One approach to determine

these probability values is to represent the problem as an optimisation problem and use linear

programming algorithms (such as the simplex algorithm [73] or interior point methods [116]) to

derive a solution. Doing so for the rock-paper-scissors example gives a Nash equilibrium vector

of probabilities as follows: ( 1
3 ,

1
3 ,

1
3 ), i.e. the equilibrium solution is to just play rock, paper or

scissors with equal probability.

2.3.3. Equilibrium Strategies for Texas Hold’em

The example presented in the previous section showed that by representing a game as a payoff

matrix in normal form we can use linear programming to derive an equilibrium strategy. How-

ever, the scope of rock-paper-scissors is extremely small when compared to more strategically

interesting games such as poker. Using the normal form to represent the game of rock-paper-

scissors is satisfactory due to its size, however as the size of the game tree increases the corre-
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Figure 2.5: A high level view of the game tree for 2-player Texas Hold’em, which consists of
approximately 1018 game states. Based on original image presented in [18]

sponding size of the normal form matrix increases exponentially. Using linear programming to

solve the matrix game becomes infeasible as the matrix gets too large.

Another representation, known as the sequence form [60], addresses some of the shortcom-

ings of the normal form. Rather than representing a strategy as a combination of probabilities

over all possible pure strategies, the sequence form specifies the probabilities of taking certain

actions at each of the game tree’s information sets. This results in a representation that is only

linear in the size of the game tree and therefore allows larger games to be solved via linear pro-

gramming.

While the use of the sequence form allows a much larger class of games to be solved us-

ing game theoretic methods [59], it is still computationally infeasible to represent and solve for

games that involve massive game trees, such as full-scale Texas Hold’em. Figure 2.5 depicts a

high level view of the game tree for two-player, limit Texas Hold’em, which consists of approx-

imately 1018 game states. The numbers next to each round represent the number of nodes in

the game tree generated due to chance alone and the characters represent the possible betting

sequences that lead to the next round. To put this in perspective consider a reduced version of

Texas Hold’em, called Rhode Island Hold’em [109]. Rhode Island Hold’em was created because

it retains the beneficial properties of Texas Hold’em, but reduces the number of game states

from 1018 down to 109. Gilpin and Sandholm [41] report that applying the sequence form to
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Rhode Island Hold’em produces a linear program with 91,224,226 rows and the same number

of columns, which is much too large a matrix to solve. To overcome this limitation it is necessary

to limit the size of the game tree by imposing simplifying abstractions (see section 2.3.4.) to the

game itself. Applying abstractions to the game of Rhode Island Hold’em reduces this matrix to

just 1,190,443 rows and 1,181,084 columns which was able to be solved via linear programming

methods. The coupling of abstractions together with the sequence form representation has

resulted in computationally tractable large-scale games that are able to be solved using linear

programming methods.

2.3.4. Abstractions

The combination of game tree abstractions and the use of linear programming methods has

resulted in the construction of strong poker programs that approximate equilibrium solutions

[18, 39, 6]. Each of these programs requires the use of a combination of abstractions to reduce

the size of the game tree.

In general, there are two categories of abstraction, those that respect the original strategic

complexity of the game (lossless abstractions) and those that compromise it (lossy abstractions).

The following example will highlight the differences between the two.

Consider the preflop stage of the game where each player is dealt two cards that only they

can see. Out of a deck of 52 cards the first player is dealt 2 cards at random
(
52
2

)
followed by the

second player
(
50
2

)
resulting in a total of 1,624,350 possible combinations (see Figure 2.5). Imag-

ine for one of these combinations that player one is dealt the two cards A♥K♥ and player two is

dealt T♣J♠. Now, during the preflop stage of the game there is no strategic difference between

the hands A♥K♥, A♠K♠, A♣K♣ or A♦K♦. The only difference between these hands are the suits

and at present the suit information has no bearing on the quality of the hand. All that matters

is whether the hand is of the same suit or not. Hence, an abstraction can be used where the

hands A♥K♥, A♠K♠, A♣K♣ and A♦K♦ could all be represented as the single hand AKs (where

s stands for suited). The same holds for player two who was dealt T♣J♠, this player could have

equivalently been dealt T♥J♠, T♦J♣, T♥J♦ etc. the only difference is that the two cards are not

of the same suit, so they could all be represented as TJo (where o stands for off-suit). In total

there are 169 equivalence classes of this form for all two card combinations. Using this abstrac-

tion technique can drastically reduce the number of preflop card combinations in the game tree

from 1,624,350 to 28,561. The important point is that no strategic information has been lost to

achieve this reduction. The game tree has been reduced in size simply by reclassifying hands in

a more concise manner.

Unfortunately, lossless abstractions alone do not always provide the reduction in size re-

quired to solve large scale games. This results in the need for lossy abstractions that will affect
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the original strategic integrity of the game to some degree. Furthermore, the example presented

above only works for one stage of the poker game tree, i.e. the preflop. Once play transitions to

the next stage (the flop) suit information is required and this information has now been lost. A

better abstraction would be one that is able to be used throughout the entire game tree. Buck-

eting (also known as binning ) is a powerful abstraction that has been used within many poker

agents [109, 18, 39, 6]. Bucketing is a lossy abstraction that groups categories of hands into

equivalence classes. One possible method of bucketing groups hands based on the probabil-

ity of winning at showdown against a random hand. This is given by enumerating all possible

combinations of community cards and determining the proportion of the time the hand wins.

This is referred to as roll-out hand strength or expected hand strength (E[HS]). Hands can then

be grouped by assigning them into a particular bucket which holds hands with the sameE[HS].

For example, the use of five buckets would create the following categories:

[0.0 - 0.2] [0.2 - 0.4] [0.4 - 0.6] [0.6 - 0.8] [0.8 - 1.0]

and group all hands with the same winning probabilities into the same bucket. The abstract

game model is now constructed using buckets rather than cards. To complete the abstract game

model, the final requirement of bucketing is to determine the probability of transitioning be-

tween different buckets during each stage of play.

Abstraction via bucketing can either be performed manually, by the system designer, or the

process can be automated. Creating a manual abstraction allows the designer control over

bucket types and boundaries, but may be costly when re-creating an abstraction. On the other

hand, automated abstraction, groups similar hands into buckets that are determined by the

algorithm itself. Automated abstraction typically allows the specification of some granularity

to determine how fine (or coarse) to make a particular abstraction. Finer abstractions lead to

larger models that are required to be solved.

Expectation-Based Abstraction

An abstraction that is derived by bucketing hands based on expected hand strength is referred

to as an expectation-based abstraction. Johanson [55] points out that squaring the expected

hand strength (E[HS2]) typically gives better results, as this assigns higher hand strength val-

ues to hands with greater potential. A hand’s potential refers to its ability to improve in strength,

given future community cards. Typically in poker, hands with similar strength values, but dif-

ferences in potential, are required to be played in strategically different ways [111].

The example above presented one standard procedure for automatically grouping hands by

placing them into buckets, based on a predefined partition of winning probabilities. One prob-

lem with this approach is that some buckets will contain many hands, while others may contain
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very few. Further bucketing procedures attempt to improve upon the standard bucketing ap-

proach presented above.

Nested bucketing attempts to further accommodate for the effects of hand potential. Nested

bucketing begins like standard bucketing, by combining hands into buckets that have

similar E[HS2] values, however after the first bucketing stage a second bucketing stage

splits each of the first buckets based on standard E[HS]. This is done in order to better

distinguish between hands with high hand strength and hands with high potential.

Percentile bucketing is an automated bucketing technique that creates buckets that hold roughly

the same amount of hands. Percentile bucketing modifies the hand strength boundaries

used for each bucket, such that each bucket contains the same percentage of hands. For

example, given 5 buckets for a betting round, the bottom 20% of hands would be assigned

into the first bucket, the next 20% of hands assigned into the next bucket, and so on. The

top 20% of hands would be assigned into the last bucket.

History bucketing is a manual bucketing technique that allows finer control over bucket bound-

aries. In history bucketing child buckets are individually determined for each parent

bucket in the previous round. History bucketing makes use of the fact that some buck-

ets have a greater probability of transitioning to particular buckets in the next round. For

example, it is more likely that a bucket that represents high hand strength in one round,

will transition to a high hand strength bucket in the next round. Correspondingly, it is

likely that a low hand strength bucket will remain in a low hand strength bucket between

rounds, rather than transitioning into a very high hand strength bucket. By modifying

bucket boundaries, history bucketing allows finer control over how many hands can be

mapped into a child bucket for each parent, resulting in an improved quality of abstrac-

tion, without increasing the number of buckets.

Potential-Aware Automated Abstraction

A separate automated abstraction method is potential-aware automated abstraction, devel-

oped by Gilpin and Sandholm at Carnegie Mellon University [45]. Expectation-based abstrac-

tions require information about hand potential to be encapsulated within a one-dimensional

hand strength value, whereas potential-aware abstractions make use of multi-dimensional his-

tograms to assign similar hands into buckets.

Gilpin et al. [45] describe their procedure for generating potential-aware automated abstrac-

tions as follows. Firstly, given the desired size for the final linear program to be solved, the max-

imum number of buckets available for each round is decided upon. Buckets are populated for

each individual playing round starting with the preflop. In order for the algorithm to capture
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information about hand potential, buckets for future rounds first need to be represented in or-

der to derive buckets for the current round. This is achieved by performing several bottom-up

parses of the game tree.

Consider the following example for computing preflop buckets. First, a bottom-up parse of

the game tree is performed by bucketing all river hands into a much smaller set of river clusters.

As there are no future cards to come after the river, there is no need to consider hand potential

at this point, so river clusters are determined based on their final hand strength. The k-means

clustering [66] algorithm is used to group river cards into their corresponding clusters. Once

the set of river clusters has been determined, histograms for all possible hands on the turn are

computed that represent the frequency of transitioning to each river cluster. For example, if

there are 5 clusters on the river, each hand histogram on the turn will consist of 5 values, repre-

senting the possibility of ending up in each of the river clusters, given the final community card

that is dealt for the river. The use of a histogram for each hand captures whether a hand has

high potential or not, i.e. whether the hand has a high possibility of transitioning into a better

cluster on the next round. Once histograms are determined for each hand on the turn, these are

also clustered into a smaller set, again via k-means clustering. This process requires grouping

together histograms that are similar to each other and hence requires a similarity function to be

defined between histograms. Gilpin et al. [45] determine the similarity between two histograms

by summing the Euclidean distance for each value in the histogram. This same process is re-

peated to create histograms for the flop and finally for the preflop. Once the initial bottom-up

parse of the game tree has completed the result is a set of N buckets for the preflop stage of the

game.

Establishing buckets for the flop and turn follow along similar lines, however instead of per-

forming a complete bottom-up parse of the entire game tree, a series of smaller bottom-up

parses are conducted. One bottom-up parse for each of the previously decided upon parent

buckets is performed, where the combination of hands to consider is limited to only those

hands that belong to the appropriate parent bucket.

A further requirement of deriving non-preflop buckets is to determine how many children

each of the parent buckets should have, given the specified limit on the total number of buckets

available for the current round. [45] achieve this by performing multiple k-means clusterings

for each parent bucket, ranging from k = 1 up to some maximum value, such that the limit on

the number of buckets per round constraint is satisfied. For each k, an error measure is calcu-

lated based on the distance of data points to their cluster centroids. Once these error measures

are known, Gilpin et al. [45] solve an integer program that minimises the error, based on con-

straints that limit the number of buckets to the pre-specified amount. The result of solving this

integer program determines the bucket structure for the non-preflop betting round.
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Finally, as there is no potential to consider on the river, k-means clustering is performed on

the final hand strength values to determine the river buckets. Once again an integer program is

solved to determine how many children each of the turn buckets should have.

Gilpin and Sandholm [42] perform a comparative evaluation of automated expectation-based

abstraction compared to potential-aware abstraction. They report that the potential-aware

automated abstraction procedure outperformed expectation-based automated abstraction for

finer-grained abstractions, whereas expectation-based abstraction was better for coarser ab-

stractions. Furthermore, [42] show that potential-aware abstractions are lossless in the limit,

i.e. given a fine enough abstraction and the computational power to solve the corresponding

model, a potential-aware abstraction could be used to find an exact Nash-equilibrium strategy.

Imperfect Recall Abstractions

The abstractions mentioned above all assumed perfect recall. Perfect recall ensures a player is

not required to forget previous observations and actions they have made at a particular point

in the game. On the other hand, imperfect recall forces a player to forget previous observations.

In human beings, imperfect recall may not be enforceable, but for artificial agents this type of

forgetting is possible.

Imperfect recall has been investigated in the computer poker domain [120], due to the fact

that creating an abstraction that relaxes the perfect recall assumption can allow more emphasis

to be placed on the most recent information a player has at decision time, at a cost of forgetting

(or blurring) the information about previous observations. In equilibrium finding approaches

for computer poker, imperfect recall has the beneficial quality of reducing computational costs

and allowing more expressive abstractions to be solved.

An imperfect recall abstraction allows more computational resources to be assigned to the

current betting round by reducing the granularity or completely eliminating information from

previous betting rounds. For example, an increased number of buckets could be assigned on

the turn betting round by merging buckets from previous rounds together and hence forcing

the player to consider fewer histories from previous rounds. An even more extreme abstraction

could force a player to completely forget all previous round buckets, therefore allowing a finer

distinction to be placed on the current round buckets. On the other hand, a perfect recall ab-

straction would require that the number of buckets used per round be reduced, as these need

to be remembered and distinguished between during rounds.

Since the current state of the player’s hand is more important than how it came to be, a trade-

off can be made by allocating more computational resources for information that is important

right now, in exchange for forgetting past information. However, by relaxing the perfect recall

assumption, many theoretical guarantees are now lost and, in some cases, equilibrium finding
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algorithms are no longer well defined. Despite the loss of these guarantees, Waugh et al. [120]

present results that suggest this is not an issue in practise. Their results show imperfect recall

abstractions are superior to their perfect recall counterparts.

Other Abstractions

Overall, bucketing is a powerful abstraction technique that can reduce the number of nodes

in the abstract game tree dramatically, however the consequence of this is that now multiple

hands, which may not be strategically similar, will be mapped into the same category. In addi-

tion to bucketing two further lossy abstractions for Texas Hold’em are described below.

Betting round reduction In a typical game of limit hold’em each player is allowed to commit

a maximum of 4 bets each to the pot during each betting round. By reducing the allowed

number of bets the branching factor in the abstract game tree can also be reduced.

Elimination of betting rounds A more drastic abstraction involves the elimination of entire

betting rounds. As an example, consider a game of poker where play ends at the turn.

This reduces the size of the game tree by eliminating the last community card and the

final round of betting. The effect of this abstraction can be softened by performing a roll-

out of all 44 possible river cards and computing the expected value of the outcome, rather

than simply truncating the game tree and awarding the pot to the player with the winning

hand [18].

As lossy abstractions are required to produce full-scale poker agents they cannot be said to

be true Nash equilibrium solutions for the original game, as solving the abstract game model

cannot guarantee Nash equilibrium solutions will be preserved. Instead, this approach is said

to produce approximate equilibrium solutions, which may come close to a true equilibrium

strategy, but are not true equilibria, hence allowing the strategy to be exploitable to some de-

gree. We will use the terms near-equilibrium and ε-Nash equilibrium interchangeably when

referring to these strategies.

2.3.5. Near-Equilibrium Poker Agents

This section will survey a collection of poker agents that were produced using the techniques

described above, i.e. by representing and solving large abstract game models as linear programs

(LP). Most of the agents presented play 2-player Texas Hold’em and are split into limit and no-

limit agents.
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Heads-up Limit

Shi and Littman [109] produced a game theoretic player for the two player game of Rhode Island

Hold’em. In Rhode Island Hold’em each player receives one personal card followed by a round

of betting. There are only two community cards dealt separately between betting rounds. Shi

and Littman’s game theoretic player was able to beat a range of rule-based players.

Selby [106] focused on the preflop stage of Texas Hold’em to produce equilibrium strategies

for the first round of play only. By performing a roll-out of the remaining community cards for

future betting rounds, but not considering any betting during these rounds, payoff values were

computed and an LP created that involved all 169 equivalence classes of preflop hands. Selby

then solved this LP using the simplex algorithm to create an equilibrium strategy for preflop

play.

Billings et al. [18] were the first to derive near-equilibrium solutions for full-scale two-player,

limit Texas Hold’em by constructing and solving abstract game models that used a manually

constructed, expectation-based abstraction that eliminated betting rounds. The collection of

poker agents produced by Billings and colleagues using this approach are known as PsOpti,

one version of which is publicly available as Sparbot within the commercial application Poker

Academy Pro 2.5. Billings et al. [18] report that they were able to reduce the original size 1018

poker game tree down, by a factor of 100 billion, to separate models each of approximately 107

game states. In addition to the use of bucketing and betting round reduction, Billings et al.

[18] compute and solve separately a preflop model and a number of postflop models which

they attempt to tie together using preflop betting sequences to inform which postflop model

to employ to effectively solve for the entire game tree. A combination of the PsOpti suite of

agents, named Hyperborean, was able to defeat all competitors at the first AAAI Computer Poker

Competition in 2006 [65].

Teppo Salonen’s limit version of BluffBot [99] finished second in the same 2006 competition.

The limit version of BluffBot is a near-equilibrium agent based on expert defined abstractions

similar to PsOpti [99].

GS1 [39], developed by Gilpin and Sandholm from Carnegie Mellon University, also attempts

to derive near-equilibrium solutions for limit hold’em. GS1 relies on very little poker domain

knowledge to construct the abstract model. Instead, a system known as GameShrink [41] is

used to automatically abstract the game tree. Given a description of a game, the GameShrink

algorithm is able to automatically generate lossless or lossy abstractions to reduce the size of

the game tree. For GS1 lossy abstractions were required to reduce the game tree to a manage-

able size, that was then able to be solved via linear programming. However, rather than solving

for the entire game offline, as PsOpti does, GS1 uses a combination of offline and real-time equi-

librium finding. For the first two stages of the game, i.e. the preflop and the flop, an abstracted
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model of the truncated game is generated and solved. Whereas, on the turn and river equilib-

rium solutions are computed in real-time during game play.

Gilpin and Sandholm later identified several weaknesses that resulted from using the au-

tomated, lossy abstractions produced by the GameShrink algorithm when applied to Texas

Hold’em [40]. The next agent they developed, GS2 [40], used a better automated abstraction

routine that relied on k-means clustering [66] to identify groups of strategically similar hands.

Using these hand groups a truncated, abstract game tree (consisting of the preflop, flop and

turn betting rounds) was constructed. This truncated model was then solved to derive a near-

equilibrium strategy for GS2 to use during the preflop and flop betting rounds. Rather than rely

on uniform roll-outs that assume no future betting to determine payoff values at the truncated

leaf nodes (an assumption used by both GS1 and PsOpti), a further improvement introduced

by GS2 is the use of simulated betting actions on the river to determine more accurate payoff

values for the leafs of the tree [40]. As with GS1, GS2 again determines its betting strategy on

the turn and river in real-time using the game state information. GS2 placed third in the limit

equilibrium division of the 2006 AAAI competition [65].

Heads-up No-Limit

The agents mentioned in this section, so far, have solely focused on the limit variation of 2

player Texas Hold’em. In limit poker there are only three betting actions possible at every deci-

sion point in the game, i.e. fold, check/call or bet/raise. However, in no-limit a player may bet

any amount up to the total value of chips that they possess. In a standard game of heads-up,

no-limit poker both player’s chip stacks would fluctuate between hands, e.g. a win from a previ-

ous hand would ensure that one player had a larger chip stack to play with on the next hand. In

order to reduce the variance that this structure imposes, a variation known as Doyle’s Game is

played where the starting stacks of both players are reset to a specified amount at the beginning

of every hand.

Recall that with limited betting the Texas Hold’em game tree consists of approximately 1018

nodes, whereas for a no-limit game, where each player begins with 1000 chips, the size of the

game tree increases to roughly 1071 nodes [46]. Furthermore, increasing the starting stack sizes

of the players has the effect of exponentially increasing the size of the game tree.

Aggrobot [6] is a poker playing agent similar to PsOpti, but modified to play the no-limit

variation of Texas Hold’em. Aggrobot uses the same abstractions that were employed to create

PsOpti with the addition of a further betting abstraction to handle no-limit betting. Aggrobot

generates separate preflop and postflop models that are then combined to produce a near-

equilibrium strategy for the game of no-limit hold’em. As the use of no-limit betting causes an

exponential blow-up of the game tree, a further abstraction that discretises betting amounts is
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required to produce a tractable model. Aggrobot creates betting abstractions based on the value

of chips that are currently in the pot. In total Aggrobot defines 4 separate betting abstractions

which are: half the pot, the full amount in the pot, 2 × the pot and all-in (all the player’s re-

maining chips). All bets in the abstract model can now only belong to one of the above four

categories. A consequence of this abstraction is that a reverse mapping for betting amounts is

required when the actual game-play begins. If Aggrobot’s opponent bets an amount that isn’t

represented by the above abstractions, such as 3
2 × the pot, this then needs to be classified as

either a pot sized bet or a bet of double the pot. Simply choosing the betting abstraction that is

closest to the bet amount results in an easily exploitable model [6, 46].

Due to processor and memory limitations [6] was only able to produce near-equilibrium

strategies for a starting chip stack of at most 40 chips (assuming a 2 chip big blind).

Teppo Solonen has also produced no-limit versions of his agent BluffBot [99], starting with

BluffBot2.0 which placed first in the heads-up, no-limit competition at the 2007 ACPC [2]. While

exact details about the no-limit versions of BluffBot are not available, they are described as

using a game theoretic near-equilibrium strategy.

Rather than focusing on hand for hand cash game play, as the above agents have, [71] com-

puted game theoretic equilibrium jam/fold strategies for the end-game phase of a one table

tournament where there are only two players remaining with a total of 8000 chips in play and a

small blind and big blind of 300 and 600 respectively. By restricting the player’s betting actions

to jam (all-in) or fold, Miltersen and Sørensen [71] were able to compute exact Nash equilib-

rium solutions using standard LP procedures and showed that these restricted strategies also

closely approximated a Nash equilibrium for the unrestricted tournament where other betting

actions are allowed. A separate analysis by [36] used an extension of fictitious play (see sec-

tion 2.3.6.) to compute near-equilibrium jam/fold strategies for the end-game of a one table

tournament consisting of 3 players.

Procedures such as the simplex method and interior point methods for solving linear pro-

grams are severely restricted by the size of the model they can accommodate. As such [18] were

forced to combine separate preflop and postflop models to approximate an equilibrium strat-

egy. [39, 40] handled the problem by creating offline equilibrium solutions for the preflop and

flop rounds and computing equilibrium strategies in real-time for the turn and river rounds.

Producing near-equilibrium strategies in this way was later identified as problematic [11] due

to the fact that simply gluing disjoint strategies together is not guaranteed to produce a com-

plete and coherent equilibrium strategy.

Waugh et al. [118] in their paper on strategy grafting later showed that piecing together sep-

arately solved sub-games, which they refer to as grafts, was able to produce a coherent overall

strategy as long as the grafts were tied together via a common base strategy. Strategy grafting
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allows finer abstractions to be solved, as each independent sub-game can be made as large as is

tractably possible to solve. After separately solving each sub-game these are then grafted onto

the base strategy to produce a completely unified strategy.

Next, we review a range of iterative algorithms for computing ε-Nash equilibria that are

able to solve larger models due to having fewer memory requirements than standard LP proce-

dures. Even with the sequence form representation, solving a model that considered all 4 betting

rounds using simplex or interior point methods would likely require too coarse an abstraction

(e.g. too few buckets) to produce reasonable quality strategies. The iterative algorithms, intro-

duced in the next section, are able to solve fine abstractions involving all 4 betting rounds at

once.

2.3.6. Iterative Algorithms for finding ε-Nash Equilibria

The previous section described an approach for finding equilibria in large scale games, where

the sequence form representation was used to construct matrices that acted as constraints

within an optimisation problem. By solving the problem using linear programming algorithms,

equilibrium strategies were found for an abstract game. These were then used within the origi-

nal game as ε-Nash equilibrium strategies. A major drawback of this approach is that represent-

ing the game in this way requires memory linear in the size of the game tree. There are however,

other ways of finding equilibria in extensive form games that make use of iterative algorithms. A

selection of these approaches are introduced below along with the poker agents they produce.

We begin with a discussion of algorithms such as fictitious play and range of skill, which have

been used to produce solid limit hold’em agents. Following this, two algorithms that represent

the current state-of-the-art for computing ε-Nash equilibria are presented. The first is the exces-

sive gap technique, which has been specialised for zero sum, extensive form games by Andrew

Gilpin and colleagues at Carnegie Mellon University. The second state-of-the-art algorithm we

review is counterfactual regret minimisation developed by the University of Alberta CPRG.

Fictitious Play

An alternative method for computing Nash equilibrium is via fictitious play [21]. Fictitious play

revolves around the idea that as two players repeatedly play a game against each other, their

strategies will steadily adapt and improve over time. The algorithm begins with each player

adopting some arbitrary strategy, where a strategy is simply a probability distribution over ac-

tions at every information set. Both players are aware of the details of their opponent’s strat-

egy. A training phase occurs where random game situations are presented to the players. Each

player can then determine the correct move in the situation, given the known strategy of their
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opponent. Players then update their average strategies based on this information. As the num-

ber of iterations increases the updated strategies typically approach a Nash equilibrium.

Dudziak [31] produced a near-equilibrium agent, called Adam, for 2-player, limit Texas Hold’em

by abstracting the poker game tree and executing the fictitious play algorithm until it converged

on a stable equilibrium strategy. Adam, was able to achieve a consistent win rate when challeng-

ing Sparbot and Vexbot from Poker Academy Pro 2.5, over a period of 20,000 and 50,000 hands

respectively.

Two successful agents developed using fictitious play are INOT and Fell Omen 2 – both de-

veloped by Ian Fellows at the University of California, San Diego [32]. In 2007 INOT placed 2nd

out of 15 competitors in the heads-up, limit instant run-off competition at the AAAI Computer

Poker Competition. The next year, in 2008, INOT’s successor, Fell Omen 2, placed 2nd equal out

of a total of 9 competitors, in the same event.

Range of Skill

The Range of Skill algorithm is an iterative procedure that was developed by Zinkevich et al.

[122] at the University of Alberta CPRG. The Range of Skill algorithm considers creating a se-

quence of agents, where the next agent created employs a strategy that can beat the previously

created agent by at least a certain amount, ε. This sequence has a finite length. As the number

of agents in the sequence approaches the maximum length, the agents’ strategies approach an

ε-Nash equilibrium, i.e. any further agents are not able to exploit the agent’s strategy by more

than ε.

The Range of Skill algorithm makes use of a separate algorithm known as generalised best

response. The generalised best response algorithm computes a best response to a restricted set

of allowed strategies, known as a restricted game. A best response is a strategy that maximises its

utility against a specific strategy. A best-response can be considered the worst case opponent

of a specific strategy.

The Range of Skill algorithm repeatedly calls the generalised best response algorithm. On

each subsequent iteration the best response from the previous invocation is included in the

set of allowed strategies of the restricted game and once again a best response is derived. The

algorithm works by returning equilibrium strategies for restricted games of increasing size. As

the number of iterations increases, the strategies returned approach an ε-Nash equilibrium.

This algorithm was used to produce a family of ε-Nash equilibrium agents known as Small-

Bot and BigBot. [122] presents SmallBot2298 and BigBot2298. SmallBot2298 uses a reduced bet-

ting abstraction where a maximum of 3 bets are allowed per round, whereas BigBot2298 con-

siders the full 4 bets per round. Both SmallBot2298 and BigBot2298 are some of the first near-

equilibrium strategies that consider a full four round betting model (preflop, flop, turn and
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river). Zinkevich et al. [122] shows that this offers a significant improvement upon previous

approaches which rely on connecting together separate smaller models such as [18] and [39].

Excessive Gap Technique

Gilpin et al. [44] present an adapted version of Nesterov’s excessive gap technique [75] that has

been specialised for two-person, zero-sum imperfect information games. EGT refers to a pro-

cedure that allows smoothing to take place within an optimisation problem.

Previous linear programming based approaches made use of the sequence form represen-

tation and used procedures such as interior-point methods to solve the corresponding LP. The

computational and memory costs associated with this approach resulted in having to severely

restrict the size of the LP’s that were able to be solved and required the combination of sev-

eral distinct LP’s in order to cover decision points for the entire game of 2-player limit Texas

Hold’em. The use of EGT was one of the first major advances away from this approach, which

allowed a non-truncated model to be solved that consisted of all four rounds of play.

The EGT algorithm presented by [44] is an iterative, anytime algorithm that requires O(1/ε)

iterations to approach an ε-Nash equilibrium. Allowing more iterations results in lowering the

ε value of the resulting ε-Nash equilibria produced. The algorithm makes use of the sequence

form representation and directly handles the saddle-point formulation of the Nash equilibrium

problem, given by the following equation:

max
x

min
y
xTAy = min

y
max

x
xTAy (2.4)

where A is the payoff matrix for player 1, x is player 1’s strategy and y is a strategy for player

2. Eq. 2.4 represents the situation in a two-player, zero-sum game where the first player is at-

tempting to maximise their payoff and the second player is attempting to minimise the payoff

given to the first player.

As some of the terms in the equation are non-smooth, i.e. not differentiable, first smooth-

ing takes place. This results in smoothing the saddle point problem into differentiable, convex

functions that can then be minimised. Once this is achieved gradient-based methods are used

to solve the corresponding minimisation problem. A major benefit of the EGT algorithm is the

low computational and memory costs associated with each iteration (the most costly operation

being the performance of a matrix vector product). Using EGT, Gilpin et al. [44] were able to

construct and solve abstractions that consisted of roughly 1010 game states.

The use of EGT resulted in one of the first agents to solve a model that consisted of all

four rounds of play [45]. The result of solving a non-truncated game, together with the use of

potential-aware automated abstraction (see section 2.3.4.) was a solid opponent, GS3, that was
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able to beat the best agents from the 2006 ACPC, as well as Sparbot and Vexbot with statistical

significance [45].

Gilpin, Sandholm & Sørensen have also used EGT to create ε-Nash equilibrium strategies

for no-limit poker. Tartanian [46], is able to build models for starting chip stacks of up to 1000

chips (cf. [6] which was only able to produce strategies for starting stacks of 40 chips). Tar-

tanian solves a complete abstract model of the entire game using automated potential-aware

card abstractions and discretisation of betting amounts. The actions allowed within the bet-

ting model chosen by [46] were similar to those chosen by [6] with the removal of the 2×pot

bet. Gilpin et al. [46] also removed the possibility of a player becoming pot committed within

the model, i.e. when a player commits a large proportion of chips compared to their chip stack

such that they become committed to the hand and there is no point in folding. Out of a total of

10 competitors, Tartanian placed second in the no-limit hold’em competition at the 2007 AAAI

Computer Poker Competition [46, 2].

Recently, Gilpin and Sandholm have presented two speed up improvements for EGT algo-

rithms [43]. The first improvement is based on randomised sampling, whereas the second spe-

cialises the algorithm to make use of modern ccNUMA (cache-coherent non-uniform memory

access) architecture, used in high-performance computing. The improvements can be applied

together or separately and are able to offer significant reductions in computation time [43].

EGT remains at present, one of the state-of-the-art algorithms for constructing ε-Nash equi-

libria in two-player zero sum games.

Counterfactual Regret Minimisation

Another state-of-the-art algorithm for computing ε-Nash equilibria in two-player zero sum

games is Counterfactual Regret Minimisation (CFR). CFR is an iterative algorithm for finding

equilibria in extensive form games [123, 55]. The algorithm relies on iteratively minimising a

counterfactual regret value. A major advantage of this algorithm is that it only requires memory

linear in the size of a games information sets, rather than game states. The algorithm is only

required to traverse the extensive form game tree, rather than store it in memory. A separate in-

formation set tree is stored for each player. A single node in an information set tree corresponds

to an entire information set within the extensive form game tree.

Consider the example presented in Figure 2.6. The tree at the top represents a portion of the

extensive form game tree for 2-player Texas Hold’em. Non-terminal nodes are labelled with ei-

ther an A or a B to indicate which player they belong to. Information sets are highlighted by the

dashed lines between nodes. The bottom tree is the corresponding information set tree. Each

of the 3 nodes that belong to B’s information set (in the top tree) will be mapped to 1 node in

the information set tree. Correspondingly, each of the 3 nodes that belong to the information
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set shown for player A will also be mapped to a single node in the information set tree. Each

node in the information set tree is required to also store values for the accumulated regret so

far, at that information set. As only the information set tree is required to be stored in memory

and not the extensive form game tree, this is what allows CFR to solve larger models than al-

ternative algorithms, such as standard LP solvers. The strategies developed are therefore better

approximations to the true equilibria of the original game [55].

The CFR algorithm is a regret minimising algorithm. An algorithm is regret minimising if, as

the number of iterations goes to infinity, the overall average regret approaches 0. The concept of

regret is similar to opportunity cost in economics. At each information set a player has a range

of actions, a, to choose from, each with their own utility u(a). If the maximum utility possible is

given by taking action, a∗, a player’s regret for choosing action a is then:

u(a∗)− u(a)

The CFR algorithm does not minimise one overall regret value, but instead decomposes

regret values into separate information sets and minimises the individual regret values. The

counterfactual aspect of the algorithm refers to the fact that calculations are weighted by the

probability of reaching a particular information set, given that a player had tried to reach it.

The summation of counterfactual regret from each information set provides a bound on overall

regret, which when minimised gives a strategy that approaches a Nash equilibrium.

Counterfactual regret minimisation is one of the most promising algorithms in current com-

puter poker research and has been used to create a range of successful hold’em agents in both

heads-up limit [55] and no-limit variations [104], as well as multi-player games [92]. Next, we

present an example of how counterfactual regret values are calculated and how these values

help to determine an action probability distribution at each information set.

CFR Example

The algorithm begins by assigning arbitrary strategies to two players and having them play re-

peated perfect information games against each other. After every game the players’ strategies

are modified in a way that attempts to minimise their regret against the current strategy of their

opponent. As the number of iterations increases, the combination of both players’ strategies

approaches an equilibrium strategy.

The following example will illustrate how CFR values are calculated at a single node in the

extensive form game tree. These values are then added to accumulated CFR values within the

information set tree, which are then used to update a player’s strategy. The game being played

is two-player, limit Texas Hold’em. The example is intended to give a general feel for the way
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Figure 2.6: Depicts a partial extensive form game tree for two-player Texas Hold’em (top) and
the corresponding portion of the information set tree (bottom). The extensive form game tree
is required to be traversed, but not stored in memory. The information set tree is required to be
stored in memory, it records accumulated regret values at each information set.
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the algorithm proceeds. For a more detailed discussion on the theoretical background of the

algorithm consult [123].

We refer again to Figure 2.6, which depicts a small portion of the extensive form game tree

and the corresponding information set tree. The greyed out nodes indicate portions of the game

tree that will not be reached, given the players’ current strategies. An ellipsis signifies missing

game information due to space considerations. We have chosen to calculate CFR values for a

node belonging to player A, that is reached after player B makes a raise. The actions available

to player A at their choice node are either fold, call or raise.

Let’s assume that B’s strategy indicates a 40% chance of raising in this situation and that A’s

current strategy specifies the following action probabilities at this node:

(f, c, r) = (0.2, 0.4, 0.4)

• The expected value for player A, given their current strategy is:

0.2× (−4) + 0.4× 1 + 0.4× 6 = 2

• For each action, a, at this choice node. Player A’s regret for not taking action a is the differ-

ence between the expected value for taking that action, and the expected value given A’s

current strategy.

f : −4− 2 = −6

c : 1− 2 = −1

r : 6− 2 = 4

• The values above indicate that A regrets not raising more than it regrets not calling or

folding. These values then need to be weighted by the probability of actually reaching this

node, which gives the following immediate counterfactual regret values.

f : −6× 0.4 = −2.4

c : −1× 0.4 = −0.4

r : 4× 0.4 = 1.6

• Recall that each node in the extensive form tree maps to a corresponding node in the

information set tree. The information set tree can be thought of as storing the sum of

the accumulated CFR values for all nodes in the same information set. After traversing all
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nodes in the extensive form tree, the information set tree is traversed and the accumulated

CFR values are used to calculate the player’s strategy for the next iteration.

• In this example, only 1 node in A’s information set contributes to the final accumulated

counterfactual regret values, because the probability of reaching the other nodes in the

same information set is 0. Therefore, the information set tree stores the following accu-

mulated CFR values:

f : −2.4

c : −0.4

r : 1.6

• The updated strategy for player A, at this information set, can be calculated as follows:

Let,D = max{0, f}+max{0, c}+max{0, r}

if D > 0 then

(f, c, r) = (
max{0, f}

D
,
max{0, c}

D
,
max{0, r}

D
)

otherwise, a default strategy is chosen, e.g. ( 1
3 ,

1
3 ,

1
3 ).

• Using the formulas above updates player A’s strategy at this choice node to

(f, c, r) = (0, 0, 1)

• Hence, if player A reaches this node on a future iteration the updated strategy advises

them to raise with 100% probability.

Recall, that previous approaches solved separate smaller models with approximately 107

states each [18, 39]. These approaches were forced to alter the game’s structure by eliminating

betting rounds, reducing the number of raises that were allowed and tying together separate

preflop and postflop models. The CFR algorithm has been used to produce and solve models

with up to 1012 states, that preserve the full Texas Hold’em betting structure and only rely on

bucketing abstractions [123]. Generally, increases in the size of the model (the less abstraction

that is used) correlate with improvements in performance (see Waugh and colleagues discus-

sion on abstraction pathologies [119] for why this is not always the case). Zinkevich et al. [123]
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and Johanson [55] show that CFR agents, produced with anywhere between 5 and 10 buckets

per round, consistently perform better than one of the strongest agents from the PsOpti family.

The example above presented CFR in its vanilla form where each game state within an in-

formation set contributes to the overall accumulated counterfactual regret values in the infor-

mation set tree. Further research efforts have shown that sampling game states, rather than

travering every game state can offer significant improvements on convergence time. Monte

Carlo CFR (MCCFR) modifies the original CFR algorithm by only updating information sets

along one particular history during each iteration. MCCFR has been shown to converge to a

Nash equilibrium much faster than standard CFR in several game domains [64].

CFR-based Poker Agents

The University of Alberta CPRG have used CFR to produce ε-Nash equilibrium strategies for

both Hyperborean-Eqm and Polaris [20] since 20075. Both Hyperborean-Eqm and Polaris are based

on similar techniques, but refer to competitors in two separate events.

Polaris refers to the “Machine” entry in the Man-Machine Poker Championship in which

some of the best human players challenge computerised opponents in limit Texas Hold’em.

In 2008, Polaris defeated its human opponents by a statistically significant margin.

Hyperborean-Eqm refers to the group’s entry for the ACPC, where only computerised agents

compete. From 2006 to 2008 Hyperborean-Eqm won every limit hold’em instant run-off compe-

tition at the ACPC. Both the limit and no-limit versions of the 2008 Hyperborean-Eqm agent were

constructed using an imperfect recall abstraction [120]. In 2009, the instant run-off competition

of the limit hold’em ACPC was won by GGValuta. GGValuta was developed by a team of students

from the University of Bucharest based on the CFR minimisation algorithm [2]. GGValuta dif-

fers from Hyperborean-Eqm in the abstractions that are used to produce the model. In particular,

GGValuta used a modified k-means clustering algorithm to assign postflop hands into groups,

based on hand strength and potential [2]. In the same competition Hyperborean-Eqm placed

2nd. The 2009 version of Hyperborean-Eqm was constructed by solving separate independent

sub-games (grafts) via the CFR algorithm and using strategy grafting [118] to combine the grafts

via a base strategy.

Recently the CFR algorithm was applied to the 3-player game of limit hold’em [93]. The

addition of the extra opponent produced a massive increase in the number of game states

and hence a more coarse-grained abstraction was required to compute the ε-Nash equilibrium

strategy [92]. Nevertheless, the resulting player, HyperboreanRing-Eqm, was able to beat all 6 op-

ponents at the 2009 ACPC 3-player limit competition [2].

5Polaris actually consists of a range of strategies, at least one of which is an ε-Nash equilibrium strategy constructed
via CFR.
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CFR has also been used to create no-limit agents [104]. In particular, the agent HyperboreanNL-

IRO won the instant run-off division of the 2010 heads-up, no-limit competition. The no-limit

variation of the game requires abstract game trees that are much larger than the correspond-

ing trees in the limit variation. Furthermore, no-limit involves a more complicated translation

phase in order to have the strategies produced play appropriately in the full version of the game

[103].

2.4. Exploitive Counter-Strategies

Nash equilibrium solutions are static, robust strategies that limit their own exploitability by

maximising a minimum outcome against a perfect opponent. In a two-person, zero-sum game

where the guaranteed minimum outcome is zero, a true Nash equilibrium strategy will never

lose in the long run. However, while the strategy may never lose, it will also never identify and

exploit weaknesses in its opponents’ play. To exploit a weak opponent requires opponent mod-

elling. An exploitive counter-strategy will determine its actions based on how it believes the

opponent plays, as represented by the opponent model. The end result is that the exploitive

counter-strategy will play off the equilibrium, therefore allowing itself to be exploitable, how-

ever it will also exploit weak opposition for more value than an equilibrium strategy.

In this section, we review agents that attempt to exploit their opponents by constructing op-

ponent models. First we discuss adaptive, exploitive counter-strategies produced via imperfect

information game tree search. This is followed by a review of static, exploitive agents that use

game theoretic principles to create strategies that make compromises between limiting their

own exploitability versus the level at which they exploit their opponents.

2.4.1. Imperfect Information Game Tree Search

In two-player, zero-sum games of perfect information the minimax search algorithm considers

a Min and a Max opponent. The algorithm proceeds by assuming that when it is Max’s turn to

act it will perform an action that maximises its own utility. Correspondingly, when it is Min’s

turn to act they will choose an action to minimise the utility given to the Max player. At the

leaf nodes of the game tree the exact outcome of the game is known. These values are then

recursively backed up to intermediate nodes using the minimax procedure. In the case where

the game tree can be fully searched to the leaf nodes the minimax algorithm corresponds to a

Nash equilibrium [102]. Typically, for games with large search spaces it is not possible to search

all the way down to the leaf nodes in the tree. Instead, an evaluation function is used to assign

utility values to nodes at some cut-off depth.
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The minimax algorithm is useful for games such as chess and checkers. Expectimax is an

extension of the minimax algorithm that enables the procedure to also handle chance events,

such as the roll of the dice or the dealing of cards. The expected value at a chance node is given

by weighting each outcome’s utility by its probability of occurrence and summing over all the

possible outcomes [9]. This addition allows the expectimax algorithm to handle games that

involve chance, e.g. backgammon.

Chess, checkers, backgammon etc. are all examples of perfect information games. In these

domains the exact outcome of the game is known at the leaf nodes, or, if an evaluation function

is being used, the public game information can provide a reasonable approximation for these

values. A player’s action at any node in the tree can then easily be determined by backing these

values up from the leafs assuming Max will choose the action with the maximum value and Min

will choose the action with the minimum value. Unfortunately, when a game involves hidden

information (such as the hidden cards in poker) the exact expected value at the leaf nodes may

no longer be known and the back up procedure can no longer provide a reasonable assumption

of the opponent’s actions.

Texas Hold’em is a game of imperfect information, as the hole cards of an opponent are hid-

den. Moreover, the cards a player holds usually determines that player’s strategy. Without this

information the likelihood of the opponent taking certain actions is unknown, as is the proba-

bility of winning at a showdown. For these reasons the expectimax algorithm cannot be directly

applied to the game of Texas Hold’em. However, it is possible to augment the expectimax al-

gorithm with an opponent model to “fill in” the missing information. The effectiveness of the

algorithm then depends on how accurate the opponent model is. Two pieces of information

required by the opponent model would be:

1. A distribution over an opponent’s actions at each opponent choice node in the game tree.

And,

2. The probability of winning at showdown leaf nodes.

Using the information from the opponent model allows expected values to be assigned to

opponent nodes in the game tree by weighting each action’s outcome by the likelihood of the

opponent taking that action at a particular point in the game. Leaf nodes can also be assigned

expected values by using the outcome probabilities estimated by the opponent model.

The University of Alberta CPRG have developed two algorithms based on the above ideas,

miximax and miximix [28, 19]. The major difference between the two is that the miximax algo-

rithm dictates that when choosing a player’s action within the game tree the action that results

in the maximum expected value should be chosen. On the other hand, the miximix proce-
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Figure 2.7: Part of Player A’s opponent model of player B.

dure avoids always choosing the maximum action so as to balance the exploration/exploitation

trade-off and avoid predictable behaviour of the agents produced.

Incomplete Information Game Tree Search Example

We now present an example to illustrate the calculation of leaf node expected values and how

these values are backed-up to intermediate nodes in the imperfect information game tree using

the miximax algorithm. Our example takes place on the last betting round in a game of heads-

up, limit Texas Hold’em and involves two players, player A and player B. At the start of the last

betting round there are 10 chips already in the pot, all further bets are in increments of 2 chips

and player B acts first.

Player A’s current beliefs about player B are represented by the opponent model in Figures

2.7 and 2.8. Figure 2.7 depicts the action frequencies player A has observed player B make at

this point in the game in the past, i.e. A expects B to always bet when B is first to act and if raised

A expects B to fold 10% of the time, call 90% of the time and never raise.

To simplify the calculations a player’s hand rank is assigned into 1 of 5 separate buckets.

Bucket 1 represents the bottom 20% of hand ranks, bucket 2 represents hand ranks in the range

of 20% - 40% and so forth, all the way up to bucket 5 which indicates a hand rank in the top

20%. Figure 2.8 depicts two showdown histograms based on A’s opponent model for player B.

The top histogram corresponds to hand ranks that player B has showed down in the past after

making a bet on the river. This tells us that player A has observed player B bet once with a hand

in bucket 1, once with a hand in bucket 2 and 3 times with a hand in bucket 4. The bottom

histogram represents the hand ranks that player B has showed down after being raised on the

river. In this case B has called the raise once with a hand in bucket 2 and 3 times with a hand in

bucket 4. For this example we assume that A has a hand rank in bucket 3.
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Figure 2.8: Two showdown histograms for betting sequences on the river. Player A’s hand rank
is in bucket 3.

We can now combine the information contained in the opponent model with a depth first

search on the imperfect information game tree (see Figure 2.9). A simple formula is used to

determine the leaf node values [19]:

EV (x) = Pr(Win)× TotalPot− PlayerInvestment (2.5)

Where, Pr(win) is the probability that player A wins and x refers to a particular node in the

game tree. In Figure 2.9 all nodes have been labelled with numbers to clarify the calculation.

A depth first search on the game tree in Figure 2.9 proceeds as follows. As A’s opponent model

indicates that player B will never check in this situation we ignore that entire sub-tree, therefore

the first leaf node we encounter (node 2) represents the situation when A folds to player B’s

initial bet. Applying formula (2.5) to the leaf node gives:

EV (2) = 0× 12− 5 = −5

The probability of winning when player A folds is trivial to calculate, i.e. it is always 0. There

are a total of 12 chips in the pot (10 plus the 2 chip bet by player B) and A has invested 5 of these

chips, which gives an EV of -5. However, if A calls the initial bet made by B (node 3) instead

of folding, now calculating the probability of winning requires the use of A’s opponent model.
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Figure 2.9: Expected value calculation using the miximax algorithm.

Recall that, based on A’s opponent model in Figure 2.8, player A can expect to win a showdown

2 out of 5 times if A calls B’s bet. Inputting this value into formula (2.5) gives:

EV (3) =
2

5
× 14− 7 = −1.4

The last action A has available at this point is to raise. Choosing this action results in a sub-

tree in which the expected values of the leaf nodes will have to be calculated as above. As A’s

opponent model predicts B will never raise in this situation (i.e. bR → (0.1, 0.9, 0.0) in Figure

2.7), the sub-tree that would have been generated at this point can be ignored as its value will

only end up being multiplied by 0. This leaves EV calculations assuming that B folds (node 5)

or calls (node 6):

EV (5) = 1.0× 16− 9 = +7

EV (6) =
1

4
× 18− 9 = −4.5



CASE-BASED STRATEGIES IN COMPUTER POKER 63

Given the expected values for the leaf nodes we can now back-up these values to interme-

diate nodes using the miximax procedure. Recall, that at opponent nodes the expected value

is backed-up by multiplying the distribution over opponent actions (given by the opponent

model) by the expected values calculated at the child nodes. For node 4, this is given by:

EV (4) = 0.1× (+7) + 0.9× (−4.5) = −3.35

The backed-up expected value at node 1 is then just the maximum of the expected values of

the child nodes, i.e. EV (1) = −1.4.

The outcome of the imperfect information tree search indicates that, given A’s current beliefs

about player B, A should simply call B’s initial bet as this gives the maximum expected value.

Adaptive Game Tree Search Agents

Using the above ideas the University of Alberta CPRG produced two heads-up, limit Texas Hold’em

agents that are both adaptive and exploitive. Vexbot [19] is an imperfect information game tree

search based agent that is available as part of the commercial software product Poker Academy

Pro 2.5. A separate, but similar agent is BRPlayer [102]. Both Vexbot and BRPlayer use context tree

data structures within their opponent models, which disregard the chance events and instead

only record betting sequences. Each betting sequence in the context tree records opponent ac-

tion frequencies for intermediate nodes and observed hand rank histograms at showdown leaf

nodes. As few observations have been made during early stages of play, both Vexbot and BR-

Player perform generalisations at showdown leaf nodes by defining various metrics to identify

similar betting sequences which can then be used to bolster observations at a particular leaf

node. For example, betting sequences that exactly match would correspond to the highest level

of similarity. The next level of similarity would consider a more coarse generalisation, such as

counting the total number of bets and raises that were made by both the player and the oppo-

nent during each betting round. In the case that there are not enough observations available

in the first similarity level, observations from the next level can be included in the model. This

process would continue for further levels of similarity until a required number of observations

was attained, with greater levels of similarity being assigned greater weight than observations

from lower levels.

The main difference between Vexbot and BRPlayer is that BRPlayer considers more levels of

(fine grained) similarity compared to Vexbot. In total BRPlayer considers 5 separate similarity

levels whereas Vexbot considers 3 levels [102]. Results reported for Vexbot show that it is able

to exploit a wide range of computerised opponents [19]. Both Vexbot and BRPlayer were able

to discover and exploit weaknesses in Sparbot’s near-equilibrium strategy. Furthermore, Vexbot
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was able to exploit the static benchmark strategies of Always-Call and Always-Raise at a level that

closely approximates the theoretically computed maximum exploitability of those strategies

[19].

McCurley [69] applied the miximax algorithm to heads-up, no-limit hold’em. Rather than

recording action frequencies to predict opponent actions, McCurley [69] trained artificial neu-

ral networks (ANN) with hand history data obtained from online poker sites. The hand history

data was clustered to create opponent models based on different playing styles. During game

tree search the ANN is used at opponent choice nodes to predict action frequencies. A weighted

hand range is also maintained. Hand ranks in the range, as well as other game state informa-

tion, are used as inputs into the ANN. The weighted hand range is also used to determine EV

at showdown leaf nodes. Due to computational costs, the imperfect information game tree

search was only conducted for the current betting round, with future betting rounds being ig-

nored. However, the results reported by [69] indicate that the agent was still profitable against

human opposition on an online poker site.

Maı̂trepierre et al. [67] created an adaptive heads-up, limit hold’em agent called Brennus.

Rather than using miximax search to explore an imperfect information game tree, Brennus con-

structs a forest of game trees. Within each separate game tree the opponent is assigned a single

weighted pair of hole cards, where the weight represents Brennus’s belief that the opponent ac-

tually has the assigned hand. The weighted expected values from each tree are then combined

to determine a betting action.

Brennus maintains a belief table during each hand, which consists of all possible hole cards

and a weight specifying the probability that the opponent has the corresponding hole cards. At

the beginning of a hand all pairs of hole cards are assigned uniform probability. As the hand

continues the probabilities are updated (via Bayes’ Theorem) based on the actions that Brennus

witnesses the opponent make. To update the probability values Maı̂trepierre et al. [67] rely on a

set of basis opponent models that define particular styles of play (e.g. tight/aggressive).

Using the opponent models to guide the agent’s beliefs combined with the forest of game

tree computations, gives Brennus five basic strategies that it must dynamically select during

play. To do so, Brennus uses the UCB1 [7] policy selection procedure to appropriately handle

the exploration/exploitation trade-off. Using the approach just described Brennus placed 8th

out of 17 competitors at the 2007 AAAI Computer Poker Competition [67, 2].

2.4.2. Game-Theoretic Counter-Strategies

Imperfect information game tree search creates exploitive, adaptable agents by generating and

searching the game tree in real-time. This section reviews static, counter-strategies that are

derived using offline, game theoretic algorithms.
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Frequentist Best Response

Frequentist Best Response (FBR) [54, 55] is an exploitive strategy that builds an offline oppo-

nent model for a chosen opponent by observing training games involving that opponent. FBR

assumes a static opponent strategy. This results in FBR counter-strategies that are exploitive,

but not adaptive. The following items briefly summarise the FBR procedure:

Preliminaries:

• Determine the abstraction to use (recall section 2.3.4.). FBR can be used within any ab-

straction.

• Determine a default policy. Given that FBR relies on observations to build its opponent

model, it is likely that gaps in the strategy will surface where no observations have been

made in the training phase. A typical default policy is always call.

Training:

• To develop an accurate and complete model of the opponent it is important to observe

many training games consisting of full information i.e. hole cards must be known. The

training phase involves mapping observations of played hands in the real game to fre-

quency counts in the abstraction chosen above. The more training games observed, the

better the opponent model will become. As observations are being made about how the

opponent plays in the real game, the choice of the opponent’s opponent will also impact

on the resulting model. For example, an opponent who mostly folds is going to reduce

the number of observations in the model. Johanson [55] recommends a simple “Probe”

opponent whose strategy involves never folding, but instead always calls and raises with

equal probability. The use of this simple opponent ensures that areas in the state space

will be explored that otherwise may not have been, given a more sophisticated opponent.

Best-response:

• Once the frequentist opponent model has been constructed a best-response is computed

in the chosen abstraction. Computing a best-response roughly involves visiting every in-

formation set in the abstraction and determining the action that will maximise the ex-

pected value against the opponent’s strategy. The frequentist opponent model derived in

the training phase is used as an approximation of the opponent’s actual strategy in the

given abstraction.

Johanson [55] reports that a typical FBR counter-strategy requires approximately 1 million

training games against the “probe” opponent to generate an appropriate opponent model in
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a 5 bucket abstraction. Using this model and an always-call default policy, Johanson presents

results that indicate FBR counter-strategies are able to significantly exploit the opponents they

were designed to exploit. However, using these counter-strategies to challenge other oppo-

nents, who they weren’t designed for, results in significant losses for the FBR strategies, high-

lighting their extremely brittle nature. Nevertheless, the FBR algorithm remains a powerful tool

for determining the exploitability of an opponent.

Restricted Nash Response

The Restricted Nash Response (RNR) [54, 55] algorithm attempts to bridge the gap between FBR

and ε-Nash equilibria. While FBR strategies are able to exploit opponents they were designed

to defeat by large margins, the losses they incur against other opponents cancel out these win-

nings and degrade their overall effectiveness. RNR, on the other hand attempts to produce

counter-strategies that are still able to exploit specific opponents while limiting their own ex-

ploitability.

The RNR algorithm involves solving a modified game where the opponent plays a known

fixed strategy with probability p, and is free to play an unrestricted game theoretic strategy with

probability 1−p. Any method that computes a Nash equilibrium can be used to solve the game,

such as solving a linear program or using the counterfactual regret minimisation algorithm. The

result of finding an ε-Nash equilibrium in this modified game produces counter-strategies that

will attempt to exploit the known fixed strategy, while still protecting the counter-strategies own

exploitability. To determine the opponent’s fixed strategy FBR is used. Intuitively, when p = 0

the strategies produced are ε-Nash equilibrium strategies, whereas when p = 1 the counter-

strategy is a best-response to the fixed strategy. Where p varies between 0 and 1, a trade-off is

made between the counter-strategies exploitation of its opponent and its own exploitability.

While the counter-strategies produced using RNR are not able to exploit their intended op-

ponents by as much as FBR, they also are not beaten by nearly as much as the FBR counter-

strategies when facing opponents they were not designed for [55]. As such, they have been

labelled robust counter-strategies.

Just as with the vanilla implementation of the CFR algorithm, RNR algorithms have also

been extended by introducing selective sampling in replacement of full tree traversal. Monte-

Carlo RNR (MCRNR) [87] is one such algorithm that allows a faster rate of convergence than its

non-sampled counterpart.
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Data Biased Response

The last approach that we discuss in this line of research that produces non-adaptive, exploitive

counter-strategies is Data Biased Response (DBR) [53]. DBR produces robust counter-strategies

in a manner similar to RNR, described above.

As with RNR, DBR computes a Nash equilibrium in a modified game where the opponent is

forced to play a fixed strategy a certain proportion of the time. However, instead of constraining

the opponent’s entire strategy with one p value, DBR provides individual pconf values for each

information set in the game tree. The opponent is then forced to play a fixed strategy at that

particular location in the game tree with probability pconf and is free to play an unrestricted

strategy with probability 1 − pconf . The use of only one p value in the RNR algorithm imposes

an unrealistic expectation on the opponent model. It is more likely that the opponent model

will have more observations at some areas in the game tree and fewer observations in other

areas. In this way pconf acts as a confidence measure of the accuracy of the opponent model.

[53] experimented with various functions to calculate values for pconf which vary between 0 and

pmax, where pmax refers to the final trade-off between exploitation and exploitability, similar to

p in the RNR approach.

An advantage of DBR is that it eliminates the need for a default policy. For information sets

where no observations have been recorded for the opponent model, a pconf value of 0 can be

returned, allowing the opponent to play an unrestricted game theoretic strategy at this point.

As the number of observations increase pconf will return greater values making it more likely

that the opponent will be constrained to take the action dictated by the opponent model at a

particular information set. Johanson and Bowling [53] present results that show that DBR does

not overfit the opponent model, like RNR tends to. Furthermore, with fewer observations DBR

is still an effective strategy for constructing robust counter-strategies. The DBR procedure was

used to construct the 2009 version of the agent Hyperborean-BR [52], which placed second in the

2009 ACPC 2-player limit bankroll competition.

Teams of Agents

The descriptions above suggest that a single counter-strategy will successfully exploit the in-

tended opponent. However, when challenging other competitors, dissimilar to the opponents

they were designed to exploit, then the counter-strategies will not fare as well. A brittle counter-

strategy, such as FBR, is likely to lose a lot in this situation, whereas a robust counter-strategy,

such as RNR or DBR, will limit their own exploitability, but will be unable to exploit the new

opponent.

To enable the exploitation of a range of dissimilar opponents, a team of counter-strategies is

required, where each member of the team is able to exploit a different style of opponent. During
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game play it is then required to select the strategy that achieves the greatest profit against the

current opponent. Johanson [55] describes the use of a coach, that determines the appropriate

strategy to employ against an opponent using the UCB1 algorithm [7]. The UCB1 algorithm

defines a policy selection procedure that achieves an effective trade-off between exploration

and exploitation. In the case of a team of poker agents, strategy selection must consider the

benefits of re-using a strategy that is known to successfully exploit an opponent for a particular

amount (exploitation), compared to selecting a different strategy that could potentially exploit

the opponent for more (exploration). Johanson et al. [54] present results which show that a

team of robust counter-strategies are able to achieve a greater profit against a set of opponents,

compared to the use of a single ε-Nash equilibrium strategy against the same opponents.

2.5. Alternative Approaches

This final section briefly introduces some alternative approaches for constructing poker strate-

gies that have not been mentioned in the previous sections.

2.5.1. Evolutionary Algorithms and Neural Networks

The use of evolutionary algorithms, to automatically evolve strong poker agents, has also been

the subject of investigation [77, 78, 79, 10, 89]. Evolutionary procedures evolve a population

over successive generations. Members of the population are typically evaluated via the use of a

fitness function. Members of the population that achieve higher fitness are more likely to pro-

ceed to the next generation, in which they produce offspring via a crossover procedure. Coevo-

lution maintains separate genetic populations, where members from one population are able

to compete against members from another, but evolution is restricted to within their separate

populations.

A notable effort from this line of research is presented by Jason Noble in [78]. Noble used

Pareto coevolution (PC) to evolve limit hold’em agents that compete in full ring games with up

to 10 players. The members of each population were artificial neural networks (ANN) that com-

pete against each other over numerous generations. Separate ANNs were used for the preflop

and postflop stages, where the inputs of each network mostly consisted of hand evaluation,

opponent modelling information and other game state parameters. The output nodes of the

networks correspond to fold, call and raise betting actions. A previous effort, from the same

author, used a less sophisticated rule-based representation [79].

Noble identifies the potential problem of using a simplistic one-dimensional fitness func-

tion that rewards ANNs that achieve a greater average bankroll compared to other ANNs. The

problem is due to the intransitive nature of poker strategies, i.e. while strategy A may beat
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strategy B and strategy B may beat strategy C, it does not necessarily follow that A beats C.

Rather, Noble attempts to evolve robust strategies by selecting members of a population based

on multi-dimensional optimisation. To do so Noble [78] bases selection on Pareto dominance,

where a player, A, Pareto-dominates another player, B, if A performs at least as well as B against

all opponents (including against B itself).

Noble [78] presents experiments that compare PC with standard coevolutionary algorithms

where selection is based on average bankroll balance. 5000 generations of evolution take place

where the members of two populations compete against a reference group of strategies. The

results show that PC produces a steady improvement against the reference group, whereas

the performance of the standard coevolutionary procedure, against the same reference group,

varies wildly. The results indicate that knowledge was able to be maintained over successive

generations using PC.

Nicolai and Hilderman [77] use a similar evolutionary procedure to evolve agents that play

no-limit Texas Hold’em at a full table consisting of 9 players. Once again ANNs are used as

members of the population. A static network structure is defined that consists of 30 input

nodes, 20 hidden nodes and 5 output nodes. Evolution takes place by refining the weights used

within the networks over successive generations.

Nicolai and Hilderman [77] use a tournament structure during the evolutionary process to

assess a player’s performance. In the tournament structure all players begin a match with an

equal number of playing chips and play continues until one player possesses all the chips. Play-

ers are then ranked based on their tournament placement, e.g. at a 9 player table the first player

eliminated receives a rank of 9, the next 8, then 7 etc. The winner of the tournament is assigned

a rank of 1. Selection is based on the average rank obtained over multiple tournaments. The se-

lected players then act as parents within the next generation. Nicolai and Hilderman [77] define

a crossover procedure that produces offspring using a biased sum over the weights of the parent

networks. The evolved ANNs were evaluated by challenging a range of static benchmark strate-

gies, such as Always-Call, Always-Raise and Always-Fold together with a group of evolved agents

from previous work [10]. The results show that improvements were observed over a baseline

evolutionary algorithm by introducing separate coevolved populations (coevolution), as well as

the introduction of a hall of fame heuristic, where members of the population compete against

a distinct set of high fitness past players, rather than competing against members from other

populations.

A further neural network based agent worthy of mention is MANZANA. MANZANA is a limit

hold’em agent, created by Marv Andersen, that won the bankroll division of the limit hold’em

competition at the 2009 and 2010 ACPC [2]. While relatively few details of MANZANA’s design

and implementation are available, it is known that separate ANNs are used for preflop and post-
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Figure 2.10: A directed acyclic graph. A, B and C are random variables. Nodes A and B are the
parents of node C and therefore they influence node C, represented by the edges.

flop play [5]. Furthermore, rather than tuning the weights of the neural network via evolution

(as the agents above did) MANZANA was trained on the hand histories of the top agent from the

previous year’s ACPC [2].

2.5.2. Bayesian Poker

The last alternative approach we review focuses on the design and application of Bayesian net-

works to produce poker playing agents. A Bayesian network is a directed acyclic graph where

each node in the graph represents a random variable [86]. The edges between nodes in the

graph represent dependency relationships (see Figure 2.10).

Each node within the network has an associated conditional probability table (CPT), which

allows conditional probability values to be calculated based on the values of the parent nodes.

By assigning nodes within the network different values, probabilities can be propagated through-

out the network, resulting in a probability distribution over the random variables.

An influence diagram (or decision network) augments a Bayesian network with information

about the utility of outcomes within the network. In this way Bayesian networks can be used to

inform decisions based on maximising expected utility.

An example Bayesian network, adapted from [62] is illustrated in Figure 2.11. Here the net-

work identifies variables for a player and an opponent. Looking at the direction of the edges in

the graph, the network indicates that the final hand of a player and their opponent determines

whether the player wins the hand or not. The current hand is influenced by the final hand type

and the opponent’s action is influenced by their current hand

AI researchers Nicholson and Korb from Monash University have spent many years investi-

gating the use of Bayesian networks within the domain of poker, beginning with five-card stud



CASE-BASED STRATEGIES IN COMPUTER POKER 71

Figure 2.11: A Bayesian network for poker, adapted from original image presented in [62]

[62] and later adapting this approach to Texas Hold’em [76]. Korb, Nicholson et. al. have de-

signed and applied Bayesian decision networks for heads-up, limit hold’em resulting in a poker

agent called BPP (Bayesian Poker Program). The networks used by BPP consist of variables

such as the amount of chips in the pot, the opponent’s action, BPP’s current and final hand

type, the opponent’s current and final hand type and whether BPP will win the hand given the

final hand types [76]. The estimated probability that BPP will win the hand is then used to make

a betting decision that attempts to maximise BPP’s total winnings.

While BPP has undergone several stages of development, results against other computerised

players indicate there is still further room for improvement. BPP competed in both the 2006 and

2007 AAAI Computer Poker Competitions. In 2006 BPP placed 3rd out of 4 competitors in the

limit hold’em bankroll competition and 4th out of 4 in the instant run-off competition [65]. In

2007, BPP lost to all, but one competitor placing 16th out of 17 in the bankroll competition and

14th out of 15 in the instant run-off competition [2].

2.6. Summary

We have presented a review of recent algorithms and approaches in the area of computer poker,

along with a survey of some of the autonomous poker agents produced using the algorithms

described. Each approach presented has highlighted its own specific opportunities and chal-

lenges for AI research within the poker domain. For example, research into ε-Nash equilibrium

strategies has mostly been driven by solving larger game models. As a result, solving models

that require fewer simplifying abstractions has typically resulted in performance improvements
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and better automated poker agents. On the other hand, a major challenge for research into ex-

ploitive agents involves the construction of accurate opponent models in real-time with limited

data, that have the ability to adjust quickly to changing opponents. For Monte-Carlo simula-

tions, problems were addressed such as how best to bias the sampling distribution to accurately

reflect the game conditions and hence perform a better informed search of the state space. Al-

ternative research efforts within the poker domain have also highlighted challenging problems

such as how to best select strategies within an evolutionary procedure given the intransitive

nature of poker strategies.

We now turn our attention to the construction and analysis of case-based strategies for com-

puter poker. In Chapter 3 we introduce a framework for the construction of case-based poker

agents via expert imitation in three separate poker domains. The frameworks introduced are

the result of an iterative period of maintenance and empirical evaluation. Chapter 3 also ad-

dresses issues such as whether strong, sophisticated strategies can successfully be produced

via observation and generalisation and how closely an original strategy can be approximated

via imitation. In later chapters, we discuss how the frameworks introduced in Chapter 3 can be

extended to improve overall performance and we seek to determine whether strategies based

on expert imitation can actually outperform the original experts that were used to train the

system.



Chapter 3

Case-Based Strategies in Computer

Poker

3.1. Introduction

1The state-of-the-art within artificial intelligence research has directly benefited from research

conducted within the computer poker domain. Perhaps its most notable achievement has been

the advancement of equilibrium finding algorithms via computational game theory. State-of-

the-art equilibrium finding algorithms are now able to solve mathematical models that were

once prohibitively large. Furthermore, empirical results tend to support the intuition that solv-

ing larger models results in better quality strategies (see [119] for a discussion of why this is not

always the case). However, equilibrium finding algorithms are only one of many approaches

available within the computer poker test-bed. Alternative approaches such as imperfect in-

formation game tree search [19] and, more recently, Monte-Carlo tree search [115] have also

received attention from researchers in order to handle challenges within the computer poker

domain that cannot be suitably addressed by equilibrium finding algorithms, such as dynamic

adaptation to changing game conditions.

The algorithms mentioned above take a bottom up approach to constructing sophisticated

strategies within the computer poker domain. While the details of each algorithm differ, they

roughly achieve their goal by enumerating (or sampling) a state space together with its pay-off

values in order to identify a distribution over actions that achieves the greatest expected value.

An alternative top down procedure attempts to construct sophisticated strategies by generalis-

ing decisions observed within a collection of data. This lazier top down approach offers its own

1The contents of this chapter originally appeared in the journal AI Communications. Jonathan Rubin and Ian Wat-
son. Case-Based Strategies in Computer Poker. AI Communications, 25(1):19–48 (2012)[97]
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set of problems in the domain of computer poker. In particular, any top down approach is a

slave to its data, so quality data is a necessity. While massive amounts of data from online poker

sites is available [90], the quality of the decisions contained within this data is usually ques-

tionable. The imperfect information world of the poker domain can often mean that valuable

information may be missing from this data. Moreover, the stochastic nature of the poker do-

main ensures that it is not enough to simply rely on outcome information in order to determine

decision quality.

In this thesis we investigate a top down approach that uses case-based reasoning to con-

struct sophisticated strategies within the computer poker domain. We address the problems

introduced by top-down strategies, mentioned above, and evaluate the performance of poker

agents produced using a top-down approach compared to their bottom-up counterparts. Our

case-based approach can be used to produce strategies for a range of sub-domains within the

computer poker environment, including both limit and no-limit betting structures as well as

two-player and multi-player matches. We have applied and evaluated case-based strategies

within the game of Texas Hold’em. Texas Hold’em is currently the most popular poker varia-

tion. To achieve strong performance, players must be able to successfully deal with imperfect

information (i.e. they cannot see their opponents’ hidden cards) and chance events (the ran-

dom distribution of playing cards).

In this chapter, we present case-based strategies in three poker domains:

1. Two-player, Limit Hold’em.

2. Two-player, No-Limit Hold’em.

3. Three-player, Limit Hold’em.

Our analysis begins within the simplest variation of Texas Hold’em, i.e. two-player, limit

hold’em. Here we trace the evolution of our case-based architecture and evaluate the effect

that modifications have on strategy performance. The end result of our experimentation in

the two-player, limit hold’em domain is a coherent framework for producing strong case-based

strategies, based on the observation and generalisation of expert decisions. The lessons learned

within this domain offer valuable insights, which we use to apply the framework to the more

complicated domains of two-player, no-limit hold’em and multi-player, limit hold’em. We de-

scribe the difficulties that these more complicated domains impose and how our framework

deals with these issues. For each of the three poker sub-domains mentioned above we produce

strategies that have been extensively evaluated. In particular, we present results from Annual

Computer Poker Competitions for the years 2009 – 2012 and illustrate the performance trajec-

tory of our case-based strategies against the best available opposition.
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3.2. Case-Based Reasoning Motivation

Our approach makes use of the Case-Based Reasoning methodology [91, 61, 1]. The CBR method-

ology encodes problems, and their solutions, as cases. CBR attempts to solve new problems or

scenarios by locating similar past problems and re-using or adapting their solutions for the

current situation. Case-based strategies are top down strategies, in that they are constructed by

processing and analysing a set of training data. Common game scenarios, together with their

playing decisions are captured as a collection of cases, referred to as the case-base. Each case at-

tempts to capture important game state information that is likely to have an impact on the final

playing decision. The training data can be both real-world data, e.g. from online poker casinos,

or artificially generated data, for instance from hand history logs generated by the ACPC. Case-

based strategies attempt to generalise the game playing decisions recorded within the data via

the use of similarity metrics that determine whether two game playing scenarios are sufficiently

similar to each other, such that their decisions can be re-used.

Case-based strategies can be created by training on data generated from a range of expert

players or by isolating the decisions of a single expert player. Where a case-based strategy is

produced by training on and generalising the decisions of a single expert player, we refer to the

agent produced as an expert imitator. In this way, case-based strategies can be produced that

attempt to imitate different styles of play simply by training on separate datasets generated

by observing the decisions of expert players, each with their own style. The lazy learning [3]

of case-based reasoning is particularly suited to expert imitation where observations of expert

play can be recorded and stored for use at decision time.

Case-based approaches have been applied and evaluated in a variety of gaming environ-

ments. CHEBR [88] was a case-based checkers player that acquired experience by simply play-

ing games of checkers in real-time. In the RoboCup soccer domain, [34] used case-based rea-

soning to construct a team of agents that observes and imitates the behaviour of other agents.

Case-based planning [49] has been investigated and evaluated in the domain of real-time strat-

egy games [4, 81, 80, 112]. Case-based tactician (CaT) described in [4] selects tactics based on

a state lattice and the outcome of performing the chosen tactic. The CaT system was shown

to successfully learn over time. The Darmok architecture described by [81, 80] pieces together

fragments of plans in order to produce an overall playing strategy. Performance of the strategies

produced by the Darmok architecture were improved by first classifying the situation it found

itself in and having this affect plan retrieval [72]. Combining CBR with other AI approaches

has also produced successful results. In [107] transfer learning was investigated in a real time

strategy game environment by merging CBR with reinforcement learning. Also, [8] combined

CBR with reinforcement learning to produce an agent that could respond rapidly to changes in

conditions of a domination game.
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One of the major benefits of using case-based strategies within the domain of computer

poker is the simplicity of the approach. Top down case-based strategies don’t require the con-

struction of massive, complex mathematical models, that some other approaches rely on [44,

103, 93]. Instead, an autonomous agent can be created simply via the observation of expert play

and the encoding of observed actions into cases. Below we outline some further reasons why

case-based strategies are suited to the domain of computer poker and hence worthy of investi-

gation. The reasons listed are loosely based on Sycara’s [113] identification of characteristics of

a domain where case-based reasoning is most applicable (these were later adjusted by [117]).

1. A case is easily defined in the domain.

A case is easily identified as a previous scenario an (expert) player has encountered in the

past and the action (solution) associated with that scenario such as whether to fold, call

or raise. Each case can also record a final outcome from the hand, i.e. how many chips a

player won or lost.

2. Expert human poker players compare current problems to past cases.

It makes sense that poker experts make their decisions based on experience. An expert

poker player will normally have played many games and encountered many different sce-

narios; they can then draw on this experience to determine what action to take for a cur-

rent problem.

3. Cases are available as training data.

While many cases are available to train a case-based strategy, the quality of their solutions

can vary considerably. The context of the past problem needs to be taken into account

and applied to similar contexts in the future. As the system gathers more experience it

can also record its own cases, together with their observed outcomes.

4. Case comparisons can be done effectively.

Cases are compared by determining the similarity of their local features. There are many

features that can be chosen to represent a case. Many of the salient features in the poker

domain (e.g. hand strength) are easily comparable via standard metrics. Others features,

such as betting history, require more involved similarity metrics, but are still directly com-

parable.

5. Solutions can be generalised.

For case-based strategies to be successful, the re-use or adaptation of similar cases’ solu-

tions should produce a solution that is (reasonably) similar to the actual, known solution
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(if one exists) of the target case in question. This underpins one of CBR’s main assump-

tions: that similar cases have similar solutions. We present empirical evidence that sug-

gests the above assumption is reasonable in the computer poker domain.

3.3. Two-Player, Limit Texas Hold’em

We begin with the application of case-based strategies within the domain of two-player, limit

Texas Hold’em. Two-player, limit hold’em offers a beneficial starting point for the experimen-

tation and evaluation of case-based strategies, within computer poker. Play is limited to two

players and a restricted betting structure is imposed, whereby all bets and raises are limited

to pre-specified amounts. The above restrictions limit the size of the state space, compared

to hold’em variations that allow no-limit betting and multiple opponents. However, while the

size of the domain is reduced, compared to more complex poker domains, the two-player limit

hold’em domain is still very large. The game tree consists of approximately 1018 nodes and,

given the standards of current hardware, it is intractable to derive a true Nash equilibrium for

the game. In fact, it proves impossible to reasonably store this strategy by today’s hardware

standards [55]. For these reasons alternative approaches, such as case-based strategies, can

prove useful given their ability for generalisation.

We have conducted an extensive amount of experimentation on the use of case-based strate-

gies, using two-player, limit hold’em as our test-bed. In particular we have investigated and

measured the effect that changes have on areas such as feature and solution representation, sim-

ilarity metrics, system training and the use of different decision making policies. Modifications

have ranged from the very minor, e.g. training on different sets of data to the more dramatic,

e.g. the development of custom betting sequence similarity metrics. For each modification and

addition to the architecture we have extensively evaluated the strategies produced via self-play

experiments, as well as by challenging a range of third-party, artificial agents and human op-

position. In this chapter, we restrict our attention to the changes that had the greatest affect

on the system architecture and its performance. We have named our system Sartre (Similarity

Assessment Reasoning for Texas hold’em via Recall of Experience) and we trace the evolution

of its architecture below.

3.3.1. Overview

In order to generalise betting decisions from a set of (artificial or real-world) training data, first

it is required to construct and store a collection of cases. A case’s feature and solution repre-

sentation must be decided upon, such as the identification of salient attribute-value pairs that

describe the environment at the time a case was recorded. Each case should attempt to cap-
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ture important information about the current environment that is likely to have an impact on

the final solution. After a collection of cases has been established, decisions can be made by

searching the case-base and locating similar scenarios for which solutions have been recorded

in the past. This requires the use of local similarity metrics for each feature.

Given a target case, t, that describes the immediate game environment, a source case, s ∈ S,

where S is the entire collection of previously recorded cases and a set of features, F , global sim-

ilarity is computed by summing each feature’s local similarity contribution, simf , and dividing

by the total number of features:

G(t, s) =
∑
f∈F

simf (tf , sf )

|F |
(3.1)

Fig. 3.1 provides a pictorial representation of the architecture we have used to produce case-

based strategies. The six areas that have been labelled in Fig. 3.1 identify six key areas within the

architecture where maintenance has had the most impact and led to positive affects on system

performance. They are:

1. Feature Representation

2. Similarity Metrics

3. Solution Representation

4. Case Retrieval

5. Solution Re-Use Policies, and

6. System Training

3.3.2. Architecture Evolution

Here we describe some of the changes that have taken place within the six key areas of our

case-based architecture, identified above. Where possible, we provide a comparative evalua-

tion for the maintenance performed, in order to measure the impact that changes had on the

performance of the case-based strategies produced.

Feature Representation

The first area of the system architecture that we discuss is the feature representation used within

a case (see Fig. 3.1, Point 1). We highlight results that have influenced changes to the represen-

tation over time. In order to construct a case-based strategy a case representation is required
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Figure 3.1: Overview of the architecture used to produce case-based strategies. The numbers
identify the six key areas within the architecture where the affects of maintenance have been
evaluated.

that establishes the type of information that will be recorded for each game scenario. Our case-

based strategies use a simple attribute-value representation to describe a set of case features.

Table 3.1 lists the features used within our case representation. A separate representation is

used for preflop and postflop cases, given the differences between these two stages of the game.

The features listed in Table 3.1 were chosen by the author as they concisely capture all the nec-

essary public game information, as well as the player’s personal, hidden information.

Each feature is explained in more detail below:

Preflop

1. Hole Cards: the personal hidden cards of the player, represented by 1 out of 169 equivalence

classes.

2. Betting Sequence: a sequence of characters that represent the betting actions witnessed un-

til the current decision point, where actions can be selected from the set,Alimit = {f, c, r}.

Postflop

1. Hand Strength: a description of the player’s hand strength given a combination of their per-

sonal cards and the public community cards.

2. Betting Sequence: identical to the preflop sequence, however with the addition of round

delimiters to distinguish betting from previous rounds, Alimit ∪ {−}.

3. Board Texture: a description of the public community cards that are revealed during the

postflop rounds
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Table 3.1: Preflop and postflop case feature representation.

Preflop Postflop

1. Hole Cards Hand Strength

2. Betting Sequence Betting Sequence

3. Board Texture

While the case features themselves have remained relatively unchanged throughout the ar-

chitecture’s evolution, the actual values that each feature records has been experimented with

to determine the affect on final performance. For example, we have compared and evaluated

the use of different metrics for the hand strength feature from Table 3.1. Fig. 3.2 depicts the

result of a comparison between three hand strength feature values. In this experiment, the fea-

ture values for betting sequence and board texture were held constant, while the hand strength

value was varied. The values used to represent hand strength were as follows:

CATEGORIES: Uses expert defined categories to classify hand strength. Hands are assigned

into categories by mapping a player’s personal cards and the available board cards into

one of a number of predefined categories. Each category represents the type of hand the

player currently has, together with information about the drawing potential of the hand,

i.e. whether the hand has the ability to improve with future community cards. In total 284

categories were defined2.

E[HS]: Expected hand strength is a one-dimensional, numerical metric. The E[HS] metric com-

putes the probability of winning at showdown against a random hand. This is given by

enumerating all possible combinations of community cards and determining the propor-

tion of the time the player’s hand wins against the set of all possible opponent holdings.

Given the large variety of values that can be produced by the E[HS] metric, bucketing takes

place where similar values are mapped into a discrete set of buckets that contain hands of

similar strength. Here we use a total of 20 buckets for each postflop round.

E[HS2]: The final metric evaluated involves squaring the expected hand strength. Johanson [55]

points out that squaring the expected hand strength (E[HS2]) typically gives better results,

as this assigns higher hand strength values to hands with greater potential. Typically in

poker, hands with similar strength values, but differences in potential, are required to be

played in strategically different ways [111]. Once again bucketing is used where the de-

rived E[HS2] values are mapped into 1 of 20 unique buckets for each postflop round.

2A listing of all 284 categories can be found at the following website: http://www.cs.auckland.ac.nz/research/
gameai/sartreinfo.html

http://www.cs.auckland.ac.nz/research/gameai/sartreinfo.html
http://www.cs.auckland.ac.nz/research/gameai/sartreinfo.html
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Figure 3.2: The performance of three separate case-based strategies produced by altering the
value used to represent hand strength. Results are measured in sb/h and were obtained by
challenging Fell Omen 2.

The resulting case-based strategies were evaluated by challenging the computerised oppo-

nent Fell Omen 2 [32]. Fell Omen 2 is a solid two-player limit hold’em agent that plays an ε-Nash

equilibrium type strategy. Fell Omen 2 was made publicly available by its creator Ian Fellows

and has become a standard benchmark agent for strategy evaluation. The results depicted in

Fig. 3.2 are measured in small bets per hand (sb/h), i.e. where the total number of small bets

won or lost are divided by the total number of hands played. Each data point records the out-

come of three matches, where 3000 duplicate hands were played.

Results were recorded for various levels of case-base usage to get an idea of how well the

system is able to generalise decisions. The results in Fig. 3.2 show that (when using a full case-

base) the use of E[HS2] for the hand strength feature produces the strongest strategies, followed

by the use of CATEGORIES and finally E[HS]. The poor performance of E[HS] is likely due to the

fact that this metric does not fully capture the importance of a hands future potential. When

only a partial proportion of the case-base is used it becomes more important for the system to

be able to recognise similar attribute values in order to make appropriate decisions. Both E[HS]

and E[HS2] are able to generalise well. However, the results show that decision generalisation

begins to break down when using CATEGORIES. This has to do with the similarity metrics used.
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Next we discuss the area of similarity assessment within the system architecture, which is inti-

mately tied to the feature representation chosen.

Similarity Assessment

For each feature that is used to represent a case, a corresponding local similarity metric, simf (f1, f2),

is required that determines how similar two feature values, f1 and f2, are to each other. The use

of different representations for the hand strength feature in Fig. 3.2 also requires the use of sep-

arate similarity metrics. The CATEGORIES strategy in Fig. 3.2. employs a trivial all-or-nothing

similarity metric for each of its features. If the value of one feature has the same value of another

feature, a similarity score of 1 is assigned. On the other hand, if the two feature values differ at

all, a similarity value of 0 is assigned. This was done to get an initial idea of how the system per-

formed using the most basic of similarity retrieval measures. The performance of this baseline

system could then be used to determine how improvements to local similarity metrics affected

overall performance.

The degradation of performance observed in Fig. 3.2 for the CATEGORIES strategy (as the

proportion of case-base usage decreases) is due to the use of all-or-nothing similarity assess-

ment. The use of the overly simplified all-or-nothing similarity metric meant that the system’s

ability to retrieve similar cases could often fail, leaving the system without a solution for the

current game state. When this occurred a default-policy was relied upon to provide the sys-

tem with an action. The default-policy used by the system was an always-call policy, whereby

the system would first attempt to check if possible, otherwise it would call an opponent’s bet.

This default-policy was selected by the author as it was believed to be preferable to other trivial

default policies, such as always-fold, which would always result in a loss for the system.

The other two strategies in Fig. 3.2 (E[HS] and E[HS2]) do not use trivial all-or-nothing sim-

ilarity. Instead the hand strength features use a similarity metric based on Euclidean distance.

Both the E[HS] and E[HS2] strategies also employ informed similarity metrics for their betting

sequence and board texture features, as well. Recall that the betting sequence feature is repre-

sented as a sequence of characters that lists the playing decisions that have been witnessed so

far for the current hand. This requires the use of a non-trivial metric to determine similarity

between two non-identical sequences. Here we developed a custom similarity metric that in-

volves the identification of stepped levels of similarity, based on the number of bets/raises made

by each player. The exact details of this metric are presented in Section 3.3.3.. Finally, for com-

pleteness, we determine similarity between different board texture classes via the use of hand

picked similarity values.

Fig. 3.2 shows that, compared to the CATEGORIES strategy, the E[HS] and E[HS2] strategies

do a much better job of decision generalisation as the usable portion of the case-base is re-
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duced. The eventual strategies produced do not suffer the dramatic performance degradation

that occurs with the use of all-or-nothing similarity.

Solution Representation

As well as recording feature values, each case also needs to specify a solution. The most obvious

solution representation is a single betting action, a ∈ Alimit. As well as a betting action, the

solution can also record the actual outcome, i.e. the numerical result, o ∈ <, of having taken

action a ∈ Alimit, for a particular hand. Using this representation allows a set of training data

to be parsed where each action/outcome observed maps directly to a case, which is then stored

in the case-base. Case retention during game play can also be handled in the same way, where

the case-base is updated with new cases at runtime. To make a playing decision at runtime the

case-base is searched for similar cases and their solutions are combined to give a probabilistic

vector (f, c, r) that specifies the proportion of the time our strategy should take each particular

action.

A major drawback of the single action/outcome solution representation is that the case-base

becomes filled with redundant cases, i.e. cases that record the same feature values, which also

may or may not record the same betting action. An alternative solution representation, would

involve directly storing the action and outcome vectors, i.e. effectively merging the redundant

cases into one case by shifting combined information into the case solution. In order to achieve

this solution representation, it now becomes necessary to pre-process the training data. As

there is no longer a one-to-one mapping between hands and cases, the case-base must first

be searched for an existing case during case-base construction. If one exists, its solution is

updated, if one doesn’t exist, it is added to the case-base. Case retention at runtime can also still

take place, however, this requires that case solution vectors not be normalised after case-base

construction as this would result in a loss of probabilistic information. Instead, it is sufficient

to store the raw action/outcome frequency count information as this can later be normalised

at runtime to make a probabilistic decision.

A solution representation based on action and outcome vectors results in a much more com-

pact case-base. Table 3.2 depicts how much we were able to decrease the number of cases re-

quired to be stored simply by modifying the solution representation. Table 3.2 indicates that a

single valued solution representation requires over 10 times the number of cases to be stored

compared to a vector valued representation. Moreover, no information is lost when switching

from a single valued representation to a vector valued representation. This modification has a

follow on effect that improves the quality of the case-based strategies produced. As the num-

ber of cases required to be stored is so large – given the single action/outcome representation,

training of the system had to be cut short due to the costs involved in actually storing the cases.
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Table 3.2: Total cases stored for each playing round using single value solution representation
compared to vector valued solutions.

Round Total Cases - Single Total Cases - Vector

Preflop 201,335 857

Flop 300,577 6,743

Turn 281,529 35,464

River 216,597 52,088

Total 1,000,038 95,152

The compact case-base produced, by representing solutions directly as vectors, bypasses this

problem and allows the system to be trained on a larger set of data. By not prematurely restrict-

ing the training phase, the case-based strategies produced are able to increase the amount of

scenarios they are able to encounter and encode cases for during training. This leads to a more

comprehensive and competent case-base.

Case Retrieval

Our architecture for producing case-based strategies has consistently used the k-nearest neigh-

bour algorithm (k-NN) [26] for case retrieval. Given a target case, t, and a collection of cases,

S, the k-NN algorithm retrieves the k most similar cases by positioning t in the n-dimensional

search space of S. Each dimension in the space records a value for one of the case features.

Equation 3.1 (from Section 3.3.1.) is used to determine the global similarity between two cases,

t and s ∈ S.

While the use of the k-NN algorithm for case retrieval has not changed within our archi-

tecture, maintenance to other components of the architecture has resulted in modifications

regarding the exact details used by the k-NN algorithm. One such modification was required

given the transition from a single action solution representation to a vector valued solution rep-

resentation (as described in Section 3.3.2.). Initially, a variable value of k was allowed, whereby

the total number of similar cases retrieved varied with each search of the case-base. Recall, that

a case representation that encodes solutions as single actions results in a redundant case-base

that contains multiple cases with the exact same feature values. The solution of those cases

may or may not advocate different playing decisions. Given this representation, a final prob-

ability vector was required to be created on-the-fly at runtime by retrieving all identical cases

and merging their solutions. Hence, the number of retrieved cases, k, could vary between 0
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and N . When k > 0, the normalised entries of the probability vector were used to make a final

playing decision. However, if k = 0, the always-call default-policy was used.

Once the solution representation was updated to record action vectors (instead of single

decisions) a variable k value was no longer required. Instead, the algorithm was updated to

simply always retrieve the nearest neighbour, i.e. k = 1. Given further improvements to the

similarity metrics used, the use of a default-policy was no longer required as it was no longer

possible to encounter scenarios where no similar cases could be retrieved. Instead, the most

similar neighbour was always returned, no matter what the similarity value. This has resulted

in a much more robust system that is actually capable of generalising decisions recorded in the

training data, as opposed to the initial prototype system which offered no ability for graceful

degradation, given dissimilar case retrieval.

Solution Re-use Policies

The fifth area of the architecture that we discuss (Fig. 3.1, Point 5) concerns the choice of a final

playing decision via the use of separate policies, given a retrieved case and its solution. Consider

the probabilistic action vector, A = (a1, a2, . . . , an), and a corresponding outcome vector, O =

(o1, o2, . . . , on). There are various ways to use the information contained in the vectors to make

a final playing decision. We have identified and empirically evaluated several different policies

for re-using decision information, which we label solution re-use policies. Below we outline

three solution re-use policies, which have been used for making final decisions by our case-

based strategies.

1. Probabilistic The first solution re-use policy simply selects a betting action probabilistically,

given the proportions specified within the action vector, P (ai) = ai, for i = 1 . . . n. These

values are directly retrieved from a case’s solution stored within the case-base. Betting de-

cisions that have greater proportions within the vector will be made more often then those

with lower proportions. In a game-theoretic sense, this policy corresponds to a mixed

strategy.

2. Max-frequency Given an action vector A = (a1, a2, . . . , an), the max-frequency solution re-

use policy selects the action that corresponds to arg maxi ai, i.e. it selects the action that

was made most often and ignores all other actions. In a game-theoretic sense, this policy

corresponds to a pure strategy.

3. Best-Outcome Instead of using the values contained within the action vector, the best-outcome

solution re-use policy selects an action, given the values contained within the outcome

vector, O = (o1, o2, . . . , on). The final playing decision is given by the action, ai, that cor-
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Table 3.3: Results of experiments between solution re-use policies.

Max-frequency Probabilistic Best-outcome Average

Max-frequency 0.011± 0.005 0.076± 0.008 0.044± 0.006

Probabilistic −0.011± 0.005 0.036± 0.009 0.012± 0.004

Best-outcome −0.076± 0.008 −0.036± 0.009 −0.056± 0.005

responds to arg maxi oi, i.e. the action that corresponds to the maximum entry in the out-

come vector.

Given the three solution re-use policies described above, it is desirable to know which poli-

cies produce the strongest strategies. Table 3.3 presents the results of self-play experiments

where the three solution re-use policies were challenged against each other. A round robin

tournament structure was used, where each policy challenged every other policy. The figures

presented are from the row player’s perspective and are in small bets per hand. Each match con-

sists of 3 separate duplicate matches of 3000 hands. Hence, in total 18,000 hands of poker were

played between each competitor. All results are statistically significant, with 95% confidence.

Table 3.3 shows that the max-frequency policy outperforms its probabilistic and best-outcome

counterparts. Of the three, best-outcome fairs the worst, losing all of its matches. The results

indicate that simply re-using the most commonly made decision results in better performance

than mixing from a probability vector and that choosing the decision that resulted in the best

outcome was the worst solution re-use policy. Moreover, these results are representative of fur-

ther experiments involving other third-party computerised agents.

One of the reasons for the poor performance of best-outcome is likely due to the fact that

good outcomes don’t necessarily represent good betting decisions and vice-versa. The reason

for the success of the max-frequency policy is less obvious. In the author’s opinion, this has

to do with the type of opponent being challenged, i.e. agents that play a static, non-exploitive

strategy, such as those listed in Table 3.3, as well as strategies that attempt to approximate a

Nash equilibrium. As an equilibrium-based strategy does not attempt to exploit any bias in its

opponent’s strategy, it will only gain when the opponent ends up making a mistake by selecting

an inappropriate action. The action that was made most often is unlikely to be an inappropri-

ate action, therefore sticking to this decision avoids any exploration errors made by choosing

other (possibly inappropriate) actions. Moreover, biasing playing decisions towards this action

is likely to go unpunished when challenging a non-exploitive agent. On the other hand, against

an exploitive opponent the bias imposed by choosing only one action is likely to be detrimen-
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tal to performance in the long run and therefore it would become more important to mix up

decisions.

System Training

How the system is trained is the final key area of the architecture that we discuss, in regard to

system maintenance. One of the major benefits of producing case-based strategies via expert

imitation, is that different types of strategies can be produced by simply modifying the data that

is used to train the system. Decisions that were made by a single expert player can be extracted

from hand history logs and used to train a case-based strategy. Experts can be either human or

other artificial agents.

In order to train a case-based strategy, perfect information is required, i.e. the data needs to

record the hidden card information of the expert player. Typically, data collected from online

poker sites only contains this information when the original expert played a hand that resulted

in a showdown. For hands that were folded before a showdown, this information is lost. It is

difficult to train a strategy on data where this information is missing. More importantly, any

attempt to train a system on only the data where showdowns occurred would result in biased

actions, as the decision to fold would never be encountered.

It is for these reasons that our case-based strategies have been trained on data made publicly

available from the Annual Computer Poker Competition [2]. This data records hand history

logs for all matches played between computerised agents at a particular year’s competition.

The data contains perfect information for every hand played and therefore can easily be used

to train an imitation-based system. Furthermore, the computerised agents that participate at

the ACPC each year are expected to improve in playing strength over the years and hence re-

training the system on updated data should have a follow on affect on performance for any

imitation strategies produced from the data. Our case-based strategies have typically selected

subsets of data to train on, based on the decisions made by the agents that have performed the

best in either of the two winner determination methods used by the ACPC.

There are both advantages and disadvantages for producing strategies that rely on gener-

alising decisions from training data. While this provides a convenient mechanism for easily

upgrading a system’s play, there is an inherent reliance on the quality of the underlying data in

order to produce reasonable strategies. Furthermore, it is reasonable to assume that strategies

produced in this way are typically only expected to do as well as the original expert(s) they are

trained on. Later chapters in this thesis will address how this limitation may be overcome.
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3.3.3. A Framework for Producing Case-Based Strategies in Two-Player,

Limit Texas Hold’em

For the six key areas of our architecture (described above) maintenance was guided via compar-

ative evaluation and overall impact on performance. The outcome of this intensive, systematic

maintenance is the establishment of a final framework for producing case-based strategies in

the domain of two-player, limit hold’em.

Here we present the details of the final framework we have established for producing case-

based strategies. The following sections illustrate the details of our framework by specifying the

following sufficient components:

1. A representation for encoding cases and game state information

2. The corresponding similarity metrics required for decision generalisation.

Case Representation

Table 3.4 depicts the final post-flop case representation used to capture game state informa-

tion. A single case is represented by a collection of attribute-value pairs. Separate case-bases

are constructed for the separate rounds of play by processing a collection of hand histories

and recording values for each of the three attributes listed in Table 3.4. Each of the post-flop

attribute-value pairs are now described in more detail:

1. Hand Strength: The quality of a player’s hand is represented in our framework by calculating

the E[HS2] of the player’s cards and then mapping these values into 1 out of 50 possible

buckets. The use of 50 buckets allowed a suitable level of granularity for comparing hand

strengths, while also limiting case-base growth.

2. Betting Sequence: The betting sequence is represented as a string. It records all observed

actions that have taken place in the current round, as well as previous rounds. Characters

in the string are selected from the set of allowable actions, Alimit = {f, c, r}, rounds are

delimited by a hyphen.

3. Board Texture: The board texture refers to important information available, given the com-

bination of the publicly available community cards. In total, nine board texture categories

were selected by the author. These categories are displayed in Table 3.5 and are believed

to represent salient information that any human player would notice. Specifically, the cat-

egories focus on whether it is possible that an opponent has made a flush (five cards of the

same suit) or a straight (five cards of sequential rank), or a combination of both. The cat-

egories are broken up into possible and highly-possible distinctions. A category labelled
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Table 3.4: A case is made up of three attribute-value pairs, which describe the current state
of the game. A solution consists of an action and outcome triple, which records the average
numerical value of applying the action (-∞ refers to an unknown outcome).

Attribute Type Example

1. Hand Strength Integer 1 – 50

2. Betting Sequence String rc-c, crrc-crrc-cc-, r, ...

No-Salient, Flush-Possible,

3. Board Texture Class Straight-Possible, Flush-Highly-Possible,

...

Action Triple (0.0, 0.5, 0.5), (1.0, 0.0, 0.0), ...

Outcome Triple (-∞, 4.3, 15.6), (-2.0, -∞, -∞), ...

possible refers to the situation where the opponent requires two of their personal cards in

order to make their flush or straight. On the other hand, a highly-possible category only

requires the opponent to use one of their personal cards to make their hand, making it

more likely they have a straight or flush.

Similarity Metrics

Each feature requires a corresponding local similarity metric in order to generalise decisions

contained in a set of data. Here we present the metrics specified by our framework.

1. Hand Strength: Equation 3.2 specifies the metric used to determine similarity between two

hand strength buckets (f1, f2).

sim(f1, f2) = max{1− k · |f1 − f2|
T

, 0} (3.2)

Here, T refers to the total number of buckets that have been defined, where f1, f2 ∈ [1, T ]

and k is a scalar parameter used to adjust the rate at which similarity should decrease.

2. Betting Sequence: To determine similarity between two betting sequences we developed a

custom similarity metric that involves the identification of stepped levels of similarity,

based on the number of bets/raises made by each player. The first level of similarity
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(level0) refers to the situation when one betting sequence exactly matches that of another.

If the sequences do not exactly match the next level of similarity (level1) is evaluated. If

two distinct betting sequences exactly match for the active betting round and for all pre-

vious betting rounds the total number of bets/raises made by each player are equal then

level1 similarity is satisfied and a value of 0.9 is assigned. Consider the following example

where the active betting round is the turn and the two betting sequences are:

1. crrc-crrrrc-cr

2. rrc-rrrrc-cr

Here, level0 is clearly incorrect as the sequences do not match exactly. However, for the

active betting round (cr) the sequences do match. Furthermore, during the preflop (1.

crrc and 2. rrc) both players made 1 raise each, albeit in a different order. During the flop

(1. crrrrc and 2. rrrrc) both players now make 4 raises each. Given that the number of

bets/raises in the previous rounds (preflop and flop) match, these two betting sequences

would be assigned a similarity value of 0.9.

If level1 similarity was not satisfied the next level (level2) would be evaluated. Level2 sim-

ilarity is less strict than level1 similarity as the previous betting rounds are no longer dif-

ferentiated. Consider the river betting sequences:

1. rrc-cc-cc-rrr

2. cc-rc-crc-rrr

Once again the sequences for the active round (rrr) matches exactly. This time, the num-

ber of bets/raises in the preflop round are not equal (the same applies for the flop and the

turn). Therefore, level1 similarity is not satisfied. However, the number of raises encoun-

tered for all the previous betting rounds combined (1. rrc-cc-cc and 2. cc-rc-crc) are the

same for each player, namely 1 raise by each player. Hence, level2 similarity is satisfied

and a similarity value of 0.8 would be assigned. Finally, if level0, level1 and level2 are not

satisfied level3 is reached where a similarity value of 0 is assigned.

3. Board Texture: To determine similarity between board texture categories a similarity matrix

was derived. Matrix rows and columns in Fig. 3.3 represent the different categories de-

fined in Table 3.5. Diagonal entries refer to two sets of community cards that map to the

same category, in which case similarity is always 1. Non-diagonal entries refer to similarity

values between two dissimilar categories. These values were hand picked by the author.

The matrix given in Fig. 3.3 is symmetric.
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

A B C D E F G H I

A 1 0 0 0 0 0 0 0 0
B 0 1 0.8 0.7 0 0 0 0 0
C 0 0.8 1 0.7 0 0 0 0 0
D 0 0.7 0.7 1 0 0 0 0 0
E 0 0 0 0 1 0.8 0.7 0 0.6
F 0 0 0 0 0.8 1 0.7 0 0.5
G 0 0 0 0 0.7 0.7 1 0.8 0.8
H 0 0 0 0 0 0 0.8 1 0.8
I 0 0 0 0 0.6 0.5 0.8 0.8 1


Figure 3.3: Board texture similarity matrix.

Table 3.5: Board Texture Key

A No salient

B Flush possible

C Straight possible

D Flush possible, straight possible

E Straight highly possible

F Flush possible, straight highly possible

G Flush highly possible

H Flush highly possible, straight possible

I Flush highly possible, straight highly possible
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3.3.4. Two-Player, Limit Texas Hold’em Experimental Results

We now present a series of experimental results collected in the domain of two-player, limit

Texas Hold’em. The results presented are obtained from annual computer poker competitions

and data collected by challenging human opposition. For each evaluated case-based strategy,

we provide an architecture snapshot that captures the relevant details of the parameters used

for each of the six key architecture areas, that were previously discussed.

2009 IJCAI Computer Poker Competition

We begin with the results of the 2009 ACPC, held at the International Joint Conference on Artifi-

cial Intelligence. Here, we submitted our case-based agent, Sartre, for the first time, to challenge

12 other computerised agents submitted from all over the world. The following architecture

snapshot depicts the details of the submitted agent:

1. Feature Representation

a) Hand Strength – categories

b) Betting Sequence – string

c) Board Texture – categories

2. Similarity Assessment – all-or-nothing

3. Solution Representation – single

4. Case Retrieval – variable k

5. Re-Use Policy – max-frequency

6. System Training – Hyperborean-08

The architecture snapshot above represents a baseline strategy where no maintenance had

yet to be performed. Each of the entries listed above corresponds to one of the six key archi-

tecture areas introduced in Section 3.3.2.. Notice that trivial all-or-nothing similarity was em-

ployed along with a single action solution representation, which resulted in a redundant case-

base. The value for system training refers to the original expert whose decisions were used to

train the system.

The final results are displayed in Table 3.63. The competition consisted of two winner deter-

mination methods: bankroll instant run-off and total bankroll. Each agent played between 75

and 120 duplicate matches against every other agent in order to obtain the average values dis-

played. Each match consisted of 3000 duplicate hands. The values presented are the number

of small bets per hand won or lost. Our case-based agent, Sartre, achieved a 7th place finish in

the instant run-off division and a 6th place finish in the the total bankroll division.

3Full cross-tables of results can be found in Appendix A.
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Table 3.6: 2009 limit heads up bankroll and runoff results, respectively

Limit Heads up Bankroll Runoff Limit Heads up Total Bankroll Average Won/Lost

1. GGValuta 1. MANZANA 0.186± 0.002

2. Hyperborean-Eqm 2. Hyperborean-BR 0.116± 0.002

3. MANZANA 3. GGValuta 0.110± 0.002

4. Rockhopper 4. Hyperborean-Eqm 0.116± 0.002

5. Hyperborean-BR 5. Rockhopper 0.103± 0.002

6. Slumbot 6. Sartre 0.097± 0.002

7. Sartre 7. Slumbot 0.096± 0.002

8. GS5 8. GS5 0.082± 0.002

9. AoBot 9. AoBot −0.002± 0.003

10. GS5Dynamic 10. dcurbHU −0.07± 0.002

11. LIDIA 11. LIDIA −0.094± 0.002

12. dcurbHU 12. GS5Dynamic −0.201± 0.002

13. Tommybot

2010 AAAI Computer Poker Competition

Following the maintenance experiments presented in Section 3.3.2., an updated case-based

strategy was submitted to the 2010 ACPC, held at the Twenty-Forth AAAI Conference on Artifi-

cial Intelligence. Our entry, once again named Sartre, used the following architecture snapshot :

1. Feature Representation

a) Hand Strength – 50 buckets E[HS2]

b) Betting Sequence – string

c) Board Texture – categories

2. Similarity Assessment

a)Hand Strength – Euclidean

b) Betting Sequence – custom

c) Board Texture – matrix

3. Solution Representation – vector

4. Case Retrieval – k = 1

5. Re-Use Policy – probabilistic

6. System Training – MANZANA
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Table 3.7: 2010 limit heads up bankroll and runoff results. Values are in sb/h with 95% confi-
dence intervals.

Limit Heads up Bankroll Runoff Limit Heads up Total Bankroll Average Won/Lost

1. Rockhopper 1. PULPO 0.225± 0.003

2. GGValuta 2. Hyperborean-TBR 0.207± 0.002

3. Hyperborean-IRO 3. Sartre 0.203± 0.002

4. Slumbot 4. Rockhopper 0.200± 0.002

5. PULPO 5. Slumbot 0.199± 0.002

6. Sartre 6. GGValuta 0.193± 0.003

7. GS6-IRO 7. Jester 0.164± 0.003

8. Arnold2 8. Arnold2 0.160± 0.003

9. Jester 9. GS6-TBR 0.139± 0.004

10. LittleRock 10. LittleRock 0.118± 0.003

11. PLICAS 11. PLICAS −0.046± 0.005

12. ASVP 12. ASVP −0.320± 0.006

13. longhorn 13. longhorn −1.441± 0.005

Here a vector valued solution representation was used together with improved similarity as-

sessment. Given the updated solution representation, a single nearest neighbour, k = 1, was

retrieved via the k-NN algorithm. A probabilistic solution re-use policy was employed and the

system was trained on the decisions of the winner of the 2009 total bankroll division. The win-

ner of the total bankroll division was selected as the original expert (as opposed to the bankroll

runoff division) as this agent achieved the greatest overall profit. The final results are presented

in Table 3.7. Once again two winner determination divisions are presented and the values are

depicted in small bets per hand. Given the improvements, Sartre was able to achieve a 6th place

finish in the runoff division and a 3rd place finish in the total bankroll division.

2011 AAAI Computer Poker Competition

The 2011 ACPC was held at the Twenty-Fifth AAAI Conference on Artificial Intelligence. Our

entry to the competition is represented by the following architecture snapshot :

1. Feature Representation

a) Hand Strength – 50 buckets E[HS2]

b) Betting Sequence – string
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c) Board Texture – categories

2. Similarity Assessment

a) Hand Strength – Euclidean

b) Betting Sequence – custom

c) Board Texture – matrix

3. Solution Representation – vector

4. Case Retrieval – k = 1

5. Re-Use Policy – max-frequency

6. System Training – combination

While reasonably similar to the strategy employed for the 2010 competition, the architecture

snapshot above exhibits some important differences. In particular, the 2011 agent consisted of

a combination of multiple strategies that were each trained by observing and generalising the

decisions of separate original experts, see Chapter 4 for further details. Also notice the switch

from a probabilistic solution re-use policy to a max-frequency policy.

Table 3.8 presents results from the 2011 competition. For the third year in a row, Sartre was

able to improve its performance in both winner determination divisions. Sartre improved from

6th to 4th place in the instant runoff division. Whereas, in the total bankroll division Sartre

improved from 3rd place to 2nd place. Notice however, while Calamari was declared the winner

of this competition (with Sartre placing 2nd), there is overlap in the values used to make this

decision, given the standard deviations.

2012 AAAI Computer Poker Competition

Between the years 2011 to 2012 no modifications were made to the version of Sartre that was

submitted to the annual computer poker competition, except to replace one of the case-bases

used to make decisions, with an updated case-base, which was trained on data from the 2011

competition. Table 3.9 presents results from the 2012 ACPC, which was held at the Twenty-Sixth

AAAI Conference on Artificial Intelligence. For the first year since entering the competition,

Sartre experienced a degradation in performance, achieving an 8th place finish in both the in-

stant runoff and total bankroll divisions. The results from the 2012 competition suggest that

competitors are rapidly improving over the years. There is however, a tremendous amount of

overlap in the bankrolls of agents that did not finish in one of the top three spots. In particu-

lar, when the 95% confidence intervals are considered, there is overlap between all agents that

placed 4th to 8th.
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Table 3.8: 2011 limit heads up bankroll and runoff results. Values are in sb/h with 95% confi-
dence intervals.

Limit Heads up Bankroll Runoff Limit Heads up Total Bankroll Average Won/Lost

1. Hyperborean-2011-2p-limit-iro 1. Calamari 0.286± 0.004

2. Slumbot 2. Sartre 0.281± 0.006

3. Calamari 3. Hyperborean-2011-2p-limit-tbr 0.225± 0.005

4. Sartre 4. Feste 0.220± 0.005

5. LittleRock 5. Slumbot 0.216± 0.006

6. ZBot 6. ZBot 0.209± 0.006

7. GGValuta 7. Patience 0.209± 0.006

8. Feste 8. 2Bot 0.192± 0.006

9. Patience 9. LittleRock 0.180± 0.005

10. 2Bot 10. GGValuta 0.145± 0.006

11. RobotBot 11. AAIMontybot 0.001± 0.012

12. AAIMontybot 12. RobotBot −0.035± 0.010

13. Entropy 13. GBR −0.051± 0.012

14. GBR 14. Entropy −0.097± 0.013

15. player.zeta 15. player.zeta −0.176± 0.017

16. Calvin 16. Calvin −0.230± 0.012

17. Tiltnet.Adaptive 17. Tiltnet −0.268± 0.010

18. POMPEIA 18. POMPEIA −0.549± 0.006

19. TellBot 19. TellBot −0.759± 0.016

Human Opponents – Limit

Finally, we provide results for our case-based strategies when challenging human opposition.

These results were collected from an online web application4 where any human opponent

could log on via their browser and challenge the latest version of the Sartre system. While it

is interesting to gauge how well Sartre performs against human opponents (not just comput-

erised agents), care must also be taken in interpreting these results as no effort has been made

to restrict the human opposition to only players of a certain quality.

Fig. 3.4. depicts the number of small bets won in total against every human opponent to

challenge the system. In total just under 30,000 poker hands have been recorded and Sartre

4http://www.cs.auckland.ac.nz/poker/
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Table 3.9: 2012 limit heads up bankroll and runoff results. Values are in sb/h with 95% confi-
dence intervals.

Limit Heads up Bankroll Runoff Limit Heads up Total Bankroll Average Won/Lost

1. Slumbot 1. Slumbot 0.029± 0.003

2. Hyperborean.iro 2. Little Rock 0.014± 0.003

3. Zbot 2. Zbot 0.013± 0.003

4. Little Rock 4. Hyperborean.tbr 0.007± 0.002

5. Neo Poker Lab 5. Patience 0.007± 0.003

6. Patience 6. Neo Poker Lab 0.005± 0.003

7. Entropy 7. Entropy 0.004± 0.003

8. Sartre 8. Sartre 0.002± 0.003

9. huhuers 9. huhuers −0.008± 0.002

10. Feste.iro 10. Feste.tbr −0.034± 0.004

11. Little Ace 11. Little Ace −0.038± 0.003

currently records a profit of 9221 small bets. This results in a final small bets per hand (sb/h)

value of 0.30734. Fig. 3.5. depicts the sb/h values recorded over all hands.

Discussion

The results show a marked improvement between outcomes obtained over the years 2009 to

2011 at the annual computer poker competition, with some degradation in performance in

2012. In particular, Sartre achieved a 6th place finish in the total bankroll division at the 2009

competition. The following year, using the updated strategy, Sartre now achieved a 3rd place

finish (out of a total of 13 agents) in the same event. In 2011, Sartre was declared runner-up at

the 2011 total bankroll division and very nearly won this competition. The following year, when

no maintenance was performed, Sartre’s performance degraded against improved competition.

These results suggest that the maintenance performed and the updated architecture did indeed

have a significant impact on the quality of the case-based strategies produced.

For the data collected against human opposition, while we can not comment on the quality

of the human opponents challenged, the curves in Figs. 3.4 and 3.5 show a general upward trend

and a steady average profit, respectively.
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Figure 3.4: The number of small bets won in total against all human opponents to challenge
Sartre.

Figure 3.5: The small bets per hand (sb/h) won by Sartre over every hand played.
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3.4. Two-Player, No-Limit Texas Hold’em

We now examine the application of case-based strategies in the more complicated domain of

two-player, no-limit Texas Hold’em. Here we take into consideration the lessons learned during

the maintenance that was performed in the two-player, limit hold’em domain. We use this

information and the insights obtained in the limit domain to establish a finalised framework

in the no-limit domain. However, before no-limit case-based strategies can be produced, the

difficulties of handling a no-limit betting structure need to be addressed.

In the no-limit variation players’ bet sizes are no longer restricted to capped amounts. In-

stead, a player can wager any amount they wish, up to the total amount of chips they possess.

This simple rule change has a profound effect on the nature of the game, as well as on the devel-

opment of computerised agents that wish to handle a no-limit betting structure. In particular,

the transition to a no-limit domain results in unique challenges that are not encountered in a

limit poker environment. First, there is the issue of establishing a set of abstract betting ac-

tions that all real actions will be mapped into during game play. This is referred to as action

abstraction and it allows the vast, continuous domain of no-limit hold’em to be approximated

by a much smaller abstract state space. Second, given an established set of abstract actions,

a translation process is required that determines how best to map real actions into their ap-

propriate abstract counterparts, as well as a reverse translation that maps abstract actions back

into appropriate real-world betting decisions.

3.4.1. Abstraction

Recall that abstraction is a concept used by game theoretic poker agents that derive ε-Nash

equilibrium strategies for the game of Texas Hold’em. As the actual hold’em game tree is much

too large to represent and solve explicitly, it becomes necessary to impose certain abstractions

that help restrict the size of the original game. For Texas Hold’em, there are two main types of

abstraction:

1. Chance abstraction — which reduces the number of chance events that are required to

be dealt with. This is typically achieved by grouping strategically similar hands into a

restricted set of buckets.

2. Action abstraction — which restricts the number of actions a player is allowed to perform.

Action abstractions can typically be avoided by poker agents that specialise in limit poker,

where there are only 3 actions to choose from: fold (f ), check/call (c) or bet/raise (r). However

in no-limit, where a raise can take on any value, some sort of action abstraction is required. This

is achieved by restricting the available bet/raise options to a discrete set of categories based on
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Figure 3.6: Using the fcpa abstraction, the amounts above will either be mapped as a pot sized
bet – 20 or an all-in bet – 400.

fractions of the current pot size. For example, a typical abstraction such as: fcpa, restricts the

allowed actions to:

• f – fold,

• c – call,

• p – bet the size of the pot

• a – all-in (i.e. the player bets all their remaining chips)

Given this abstraction, all actions are interpreted by assigning the actual actions into one of

their abstract counterparts. While our case-based strategies do not attempt to derive an ε-Nash

equilibrium solution for no-limit hold’em, they are still required to define an action abstraction

in order to restrict the number of actions allowed in the game and hence reduce the state space.

3.4.2. Translation

Given that all bets need to be mapped into one of the abstract actions, a translation process is

required to define the appropriate mapping. The choice of translation needs to be considered

carefully as some mappings can be easily exploited. The following example illustrates how the

choice of translation can lead to exploitability.

Consider a translation that maps bets into abstract actions based on absolute distance, i.e.

the abstract action that is closest to the bet amount is the one that the bet gets mapped in to.

Given a pot size of 20 chips and the fcpa abstraction (from above) any bet between 20 and a

maximum of 400 chips will either be mapped into a pot (p) sized bet or an all-in (a) bet. Using

this translation method, a bet amount of 200 chips will be considered a pot-sized bet, whereas

a bet amount of only 20 chips more, 220, will be considered an all-in bet. See Fig. 3.6.

There can be various benefits for a player in making their opponent think that they have

made a pot-sized bet or an all-in bet. First, consider the situation where an exploitive player bets

220 chips. This bet amount will be mapped into the all-in abstract action by an opponent that
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uses the fcpa abstraction. In other words, a player has made their opponent believe that they

have bet all 400 of their chips, when in reality they have only risked 220. In this situation, it is

likely that an opponent will fold most hands to an all-in bet, however even when the opponent

calls, the exploitive player has still only wagered 220 chips as opposed to 400.

On the other hand, by betting just 20 chips less (i.e. 200 instead of 220), this alternative

situation can have an even more dramatic effect on the outcome of a hand. When an exploitive

player makes a bet of 200 chips this bet amount will be mapped as a pot-sized bet and if their

opponent decides to call they will believe that they have only contributed 20 chips to the pot

when in reality they would have invested 200 chips. If this is followed up with a large all-in

bet, an opponent that believes they have only invested 20 chips in the pot is much more likely

to fold a mediocre hand than a player that has contributed ten times that amount. As such,

an exploitive player has the ability to make their opponent believe they are only losing a small

proportion of their stack size by folding, when in reality they are losing a lot more. This can lead

to large profits for the exploitive player.

The above example shows that a translation method that uses deterministic mapping based

on absolute distance has the ability to be exploited simply by selecting particular bet amounts.

Schnizlein et al. [103] formalise this type of translation as hard translation. Hard translation is a

many to one mapping that maps an unabstracted betting value into an abstract action based on

a chosen distance metric. Given a unique unabstracted betting value, hard translation will al-

ways map this value into the same abstract action. A disadvantage of hard translation is that an

opponent can exploit this mapping simply by selecting particular betting values. To overcome

this problem, a more robust translation procedure is required, one that cannot be exploited in

such a way. Schnizlein et al. [103] also formalise an alternative soft translation that addresses

some of the shortcomings of hard translation. Soft translation is a probabilistic state transla-

tion that uses normalised weights as similarity measures to map an unabstracted betting value

into an abstract action. The use of a probabilistic mapping ensures that soft translation cannot

be exploited like hard translation can.

Having considered the issues to do with abstraction and translation, we are now able to

present our framework for producing case-based strategies in the domain of no-limit hold’em.

3.4.3. A Framework for Producing Case-Based Strategies in Two-Player,

No-Limit Texas Hold’em

We now present the final framework we have established for producing case-based strategies

in the domain of two-player, no-limit Texas Hold’em. In order to define the framework it is

necessary to specify the following four conditions:
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Table 3.10: The action abstraction used by our case-based strategies.

f fold

c call

q quarter pot

h half pot

i three quarter pot

p pot

d double pot

v five times pot

t ten times pot

a all in

1. The action abstraction used

2. The type of state translation used and where this occurs within the architecture

3. A representation for encoding cases and game state information

4. The corresponding similarity metrics required for decision generalisation.

The conditions specified above are an extrapolation of those that were used to define the

framework for producing case-based strategies in the limit hold’em domain.

Action Abstraction

Within our framework, we use the following action abstraction: fcqhipdvta. Table 3.10 provides

an explanation of the symbols used. Here fold (f ) and call (c) are the same actions that occur

in the limit variation of the game. However, there are now many betting decisions, which are

based on the proportion of the current pot size.

State Translation

Define A = {q, h, i, p, d, v, t, a} to be the set of abstract betting actions. Actions f and c are

omitted from A as these require no mapping. The exact translation parameters that are used

differ depending on where translation takes place within the system architecture, as follows:
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1. During case-base construction hand history logs from previously played hands are re-

quired to be encoded into cases. Here hard translation is specified by the following func-

tion Th : < → A:

Th(b) =


a if a

b >
b
c

c otherwise

(3.3)

where b ∈ < is the proportion of the total pot that has been bet in the actual game and

a, c ∈ A are abstract actions that map to actual pot proportions in the real game and a <=

b < c. The fact that hard translation has the capability to be exploited is not a concern

during case-base construction. Hard translation is used during this stage to ensure that

re-training the system with the same hand history data will result in the same case-base.

2. During actual game play real betting actions observed during a hand are required to be

mapped into appropriate abstract actions. This is equivalent to the translation process

required of ε-Nash equilibrium agents that solve an abstract extensive form game, such as

[6, 46, 103]. Observant opponents have the capability to exploit deterministic mappings

during game play, hence a soft translation function is used for this stage, Ts : < → A, given

by the following probabilistic equations:

P (a) =
a
b −

a
c

1− a
c

(3.4)

P (c) =
b
c −

a
c

1− a
c

(3.5)

where once again, b ∈ < is the proportion of the total pot that has been bet in the actual

game and a, c ∈ A are abstract actions that map to actual pot proportions in the real game

and a <= b < c. Note that when b = a, P (a) = 1 and P (c) = 0 and when b = c, P (a) = 0

andP (c) = 1. Hence, a betting action that maps directly to an abstract action inAdoes not

need to be probabilistically selected. On the other hand, when b 6= a and b 6= c, abstract

actions are chosen probabilistically. Note that in Equations (3.4) and (3.5), P (a) + P (c) 6=
1 and hence a final abstract action is probabilistically chosen by first normalising these

values.

3. A final reverse translation phase is required to map a chosen abstract action into a real

value to be used during game play. A reverse mapping is required to map the abstract

action into an appropriate real betting value, given the current game conditions. The fol-

lowing function is used to perform reverse translation, Tr : A→ <:
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Table 3.11: The case representation used for producing case-based strategies in the domain of
no-limit Texas Hold’em.

Feature Type Example

1. Hand Strength Integer 1 – 50

2. Betting Sequence String pdc-cqc-c, cc-, dc-qc-ci, ...

3. Stack Commitment Integer 1,2,3,4

No-Salient, Flush-Possible,

4. Board Texture Class Straight-Possible, Flush-Highly-Possible,

...

Action n-tuple (0.0, 1.0, 0.0, 0.0, ...), ...

Outcome n-tuple (-∞, 36.0, -∞, -∞, ...), ...

Tr(a) = a′ ±∆a′ (3.6)

where a ∈ A and a′ ∈ < is the real value corresponding to abstract action a and ∆a′ is

some random proportion of the bet amount that is used to ensure the strategy does not

always map abstract actions to their exact real world counterparts. For example, when

a′ = 100 and ∆ = 0.3, any amount between 70 and 130 chips may be bet.

Case Representation

Table 3.11 depicts the case representation used to capture important game state information in

the domain of two-player, no-limit Texas Hold’em. As in the limit domain, a case is represented

by a collection of attribute-value pairs and separate case-bases are constructed for the separate

betting rounds by processing a collection of hand histories and recording values for each of the

attributes listed.

Three of the four attributes (hand strength, betting sequence, board texture) are the same

as those used within the limit framework. The stack commitment attribute was introduced

especially for the no-limit variation of the game. All attributes were selected by the author,

given their importance in determining a final betting decision.
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Each case also records a solution. Once again a solution is made up of an action vector and

an outcome vector. The entries within each vector correspond to a particular betting decision.

Given the extended set of betting actions that are available in the no-limit domain, the solution

vectors are represented as n-tuples (as opposed to triples, which were used in the limit domain).

Once again, the entries within the action vector must sum to one.

Each of the attribute-value pairs are described in more detail below.

1. Hand Strength: As in the limit domain, a player’s hand is represented by calculating the

E[HS2] of the player’s cards and mapping these values into 1 out of 50 possible buckets. A

standard bucketing approach is used where the 50 possible buckets are evenly divided.

2. Betting Sequence: Once again a string is used to represent the betting sequence, which records

all observed actions that have taken place in the current round, as well as previous rounds.

Notice however, that the characters used to represent the betting sequence can be any of

the abstract actions defined in Table 3.10. As such, there are a lot more possible no-limit

betting sequences than there are limit sequences. Once again rounds are delimited by

hyphens.

3. Stack Commitment: In the no-limit variation of Texas Hold’em players can wager any amount

up to their total stack size. The proportion of chips committed by a player, compared

to the player’s stack size, is therefore of much greater importance, compared to limit

hold’em. The betting sequence maps bet amounts into discrete categories based on their

proportion of the pot size. This results in information that is lost about the total amount of

chips a player has contributed to the pot, relative to the size of their starting stack. Once

a player has contributed a large proportion of their stack to a pot, it becomes more im-

portant for that player to remain in the hand, rather than fold, i.e. they have become pot

committed.

The stack commitment feature maps this value into one of N categories, where N is a

specified granularity:

[0− 1

N
], [

1

N
− 2

N
], . . . , [

N − 2

N
− N − 1

N
][
N − 1

N
− 1]

Hence, for a granularity of N = 4, a stack commitment of 1 means the player has com-

mitted less than 25% of their initial stack, a stack commitment of 2 means that player has

contributed somewhere between 25% and 50% of their total stack, and so forth.

4. Board Texture: The details of the board texture attribute are exactly as those described in

the limit domain (see Section 3.3.3.).
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Table 3.12: Bet Discretisation String

q h i p d v t

Similarity Metrics

Each feature requires a corresponding local similarity metric in order to generalise decisions

contained in a set of data. Here we present the metrics specified by our framework.

1. Hand Strength: Similarity between hand strength values is determined by the same metric

used in the limit hold’em domain, as specified by Equation 3.2.

2. Betting Sequence: Recall that the following bet discretisation is used: fcqhipdvta. Within

this representation there are some non-identical bet sizes that are reasonably similar to

each other. For example, a bet of half the pot (h) is quite close to a bet of three quarters of

the pot (i). The betting sequence similarity metric we derived compares bet sizes against

each other that occur at the same location within two betting sequences.

Let S1 and S2 be two betting sequences made up of actions a ∈ A ∪ {f, c}, where the no-

tation S1,i, S2,i refers to the ith character in the betting sequences S1 and S2, respectively.

For two betting sequences to be considered similar they first need to satisfy the following

conditions:

1. |S1| = |S2|

2. Both S1,i = c and S1,j = a whenever S2,i = c and S2,j = a

i.e. each sequence contains the same number of elements and any calls (c) or all-in bets

(a) that occur within sequence S1 must also occur at the same location in sequence S2
5.

Any two betting sequences that do not satisfy the initial two conditions above are assigned

a similarity value of 0. On the other hand, if the two betting sequences do satisfy the above

conditions their bet sizes can then be compared against each other and a similarity value

assigned.

Exactly how dissimilar two individual bets are to each other can be quantified by how far

away from each other they occur within the bet discretisation string, displayed in Table

3.12.

5A betting sequence consists of one or more betting rounds, the above conditions must be satisfied for all betting
rounds within the betting sequence.
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As h and i are neighbours in the discretisation string they can be considered to occur at a

distance of 1 away from each other, δ(h, i) = 1, as opposed to say δ(q, t) = 6, which are at

opposite ends on the discretisation string.

For two betting sequences S1, S2 overall similarity is determined by (3.7):

sim(S1, S2) =



1−
∑|S1|

i=0 δ(S1,i, S2,i)α if |S1| = |S2|,

S1,i = c⇒ S2,i = c,

S1,j = a⇒ S2,j = a

0 otherwise

(3.7)

where α is some constant rate of decay parameter, which ensures dissimilar sequences

result in lower similarity values.

The following is a concrete example of how similarity is computed for two non-identical

betting sequences. Consider two betting sequences, S1 = ihpc and S2 = dqpc. Here, |S1| =
4 and |S2| = 4 and wherever there exists a check/call (c) in S1, there exists a corresponding

c in S2. As both conditions are satisfied we can evaluate the top half of Equation (3.7):

sim(S1, S2) = 1− [δ(i, d)α+ δ(h, q)α+ δ(p, p)α+ δ(c, c)α]

= 1− [2 · α+ 1 · α+ 0 · α+ 0 · α]

= 1− 3α

Using a rate of decay (selected by the author) of α = 0.05, gives a final similarity of: 1 −
0.15 = 0.85.

3. Stack Commitment: The stack commitment metric uses an exponentially decreasing func-

tion.

sim(f1, f2) = e(−|f1−f2|) (3.8)

where, f1, f2 ∈ [1, N ] and N refers to the granularity used for the stack commitment at-

tribute. This function was chosen as small differences between two stack commitment

attributes (f1, f2) should result in large drops in similarity.

4. Board Texture: Similarity between board texture values is determined by the same similar-

ity matrix used in the limit hold’em domain, as specified in Fig. 3.3.
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3.4.4. No-Limit, Heads-Up Experimental Results

Once again we provide experimental results that have been obtained from annual computer

poker competitions, where our case-based strategies have challenged other computerised agents.

We also provide results against human opposition.

2010 AAAI Computer Poker Competition

We submitted an early version of our two-player, no-limit case-based strategy to the 2010 com-

puter poker competition. The submitted strategy was trained on the hand history information

of the previous year’s winning agent (i.e Hyperborean) and used a probabilistic decision re-use

policy.

In the no-limit competition, the Doyle’s Game rule variation is used where both players be-

gin each hand with 200 big blinds. All matches played were duplicate matches, where each

competitor played 200 duplicate matches (each consisting of N = 3000 hands) against every

other competitor. The final results are displayed in Table 3.13. Our entry is SartreNL.

Out of a total of five competitors, SartreNL placed 4th in the total bankroll division and 2nd in

the instant runoff division. One important thing to note is that the strategy played by SartreNL

was an early version and did not fully adhere to the framework described in Section 3.4.3.. In

particular, the following abstraction was used: fcqhipdvt. While this abstraction is very similar

to that described in Section 3.4.3., it is missing the all-in action, as this was only added after the

agent had been submitted. A further difference is that the strategy submitted only used hard

translation.

Table 3.13: 2010 no-limit heads up bankroll and runoff results, respectively

No-Limit Bankroll Runoff No-Limit Total Bankroll Average Won/Lost

1. Hyperborean.iro 1. Tartanian4.tbr 2.156± 0.048

2. SartreNL 2. PokerBotSLO 1.458± 0.184

3. Tartanian4.iro 3. Hyperborean.tbr 1.212± 0.026

4. PokerBotSLO 4. SartreNL 0.537± 0.034

5. c4tw.iro 5. c4tw.tbr −5.362± 0.201

2011 AAAI Computer Poker Competition

The agent submitted to the 2011 competition fully adhered to the framework described in Sec-

tion 3.4.3.. In the 2011 competition, SartreNL placed 2nd in both winner determination divi-
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sions, out of a total of seven competitors. Table 3.14 presents the final results. Full cross-table

results can be found in Appendix A.

Table 3.14: 2011 no-limit heads up bankroll and runoff results, respectively

No-Limit Bankroll Runoff No-Limit Total Bankroll Average Won/Lost

1. Hyperborean-iro 1. Lucky7 1.567± 0.053

2. SartreNL 2. SartreNL 1.302± 0.042

3. hugh 3. Hyperborean-tbr 1.133± 0.026

4. Rembrant 4. player.kappa.nl 1.026± 0.105

5. Lucky7 5. hugh 0.968± 0.054

6. player.kappa.nl 6. Rembrant 0.464± 0.024

7. POMPEIA 7. POMPEIA −6.460± 0.051

2012 AAAI Computer Poker Competition

The SartreNL agent submitted to the 2012 competition was unchanged from the 2011 entry,

apart from the case-base which was used to make betting decisions. For the 2012 competition,

SartreNL’s case-base was created by training on the decisions of the best 2011 competitor from

the instant runoff division (i.e Hyperborean-iro). Once again, we observe in Table 3.15 that,

in general, competitors have improved over the year. In 2011, SartreNL placed 2nd in both di-

visions of the heads-up no-limit competition, whereas a year later the same architecture now

achieves a 7th place finish in the total bankroll division and a 5th place finish in the instant

runoff division, out of eleven competitors.

Human Opponents – No-Limit

Once again, we have gathered results against human opponents in the no-limit domain via our

browser based application. As with the real world limit hold’em results (see Section 3.3.4.), these

results are presented as a guide only and care must be taken in drawing any final conclusions.

Fig. 3.7. records the number of big blinds won in total against all human opponents. SartreNL

achieves a final profit of 7539.5 big blinds in just under 9000 hands. Fig. 3.8. shows the big

blinds per hand (bb/h) won over all hands played, the final bb/h value recorded is 0.9023.
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Table 3.15: 2012 no-limit heads up bankroll and runoff results, respectively

No-Limit Bankroll Runoff No-Limit Total Bankroll Average Won/Lost

1. Hyperborean 1. Little Rock 1.117± 0.029

2. Tartanian5 2. Hyperborean 0.596± 0.033

3. Neo Poker Lab 3. Tartanian5 0.580± 0.029

4. Little Rock 4. Neo Poker Lab 0.515± 0.024

5. SartreNL 5. Hugh 0.452± 0.20

6. Hugh 6. Spewy Louie 0.319± 0.031

7. Spewy Louie 7. SartreNL 0.088± 0.028

8. Lucky7 12 8. Azure Sky −0.756± 0.073

9. Azure Sky 9. Lucky7 12 −1.077± 0.063

10. dcubot 10. UNI-mb poker −1.833± 0.052

11. UNI-mb poker

Discussion

The results of the 2010 ACPC were somewhat mixed as SartreNL performed very well in the

instant runoff division, placing 2nd, but not so well in the total bankroll division where the

average profit won +0.537± 0.034 was lower than all but one of the competitors. This relatively

poor overall profit is most likely due to the 2010 version of SartreNL not encoding an all-in

action in its abstraction, which would have limited the amount of chips that could be won.

After updating the strategy for the 2011 competition to accurately reflect the framework de-

scribed, SartreNL’s performance and total profit improves to +1.302 ± 0.042. As such SartreNL

is able to perform well in both winner determination procedures, placing 2nd in both divisions

of the 2011 competition out of seven competitors. The same agent (with an updated case-base)

placed 5th out of an increased number of competitors (eleven in total) at the 2012 competition.

Results were also presented for SartreNL against human opposition. While it is interesting to

get an initial idea of how SartreNL does against human opponents, it would be unwise to draw

any conclusions from this data, especially because not nearly enough hands have been played

(given the variance involved in the no-limit variation of the game) to make any sort of accurate

assessment.
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Figure 3.7: The number of big blinds won in total against every human opponent to challenge
SartreNL.

Figure 3.8: The big blinds per hand (bb/h) won by SartreNL over every hand played.
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3.5. Multi-Player, Limit Texas Hold’em

The final sub-domain that we have applied and evaluated case-based strategies within is multi-

player Texas Hold’em. Specifically, three-player, limit Texas Hold’em, where an agent is required

to challenge two opponents instead of just one.

Once again, we use the lessons learned by applying maintenance in the two-player, limit

hold’em domain in order to finalise a framework that can handle multi-player betting.

3.5.1. A Framework for Producing Case-Based Strategies in Multi-Player,

Limit Texas Hold’em

We present the framework established for producing multi-player, limit case-based strategies.

Our framework consists of:

1. A representation for encoding cases and game state information

2. The corresponding similarity metrics required for decision generalisation.

Case Representation

Table 3.16 depicts the final post-flop case representation used to capture game state informa-

tion in the multi-player, limit hold’em domain. The main difference between Table 3.16 and the

post-flop case representation for limit hold’em 3.4 has to do with the values used to represent

the betting sequence attribute. As multi-player sequences involve more players, the sequences

that record betting actions are larger and more complicated than those in the two-player do-

main.

Each of the attribute-value pairs are described in more detail below.

1. Hand Strength: As in the previous domains, a player’s hand is represented by calculating the

E[HS2] of the player’s cards and mapping these values into 1 out of 50 possible buckets.

2. Betting Sequence: The details of the betting sequence attribute are similar to those described

in the two-player, limit domain where actions are chosen from Alimit = {f, c, r}, and

rounds are delimited by hyphens. However, as more players are involved in a hand, the

betting sequences are different than those produced in the two-player domain.

3. Board Texture: The nine board texture categories, defined in Table 3.5, are re-used in the

multi-player domain to capture important public card information.
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Table 3.16: The case representation used for producing case-based strategies in the domain of
multi-player, limit Texas Hold’em.

Attribute Type Example

1. Hand Strength Integer 1 – 50

2. Betting Sequence String rcrrcc-crrcrrcc-ccr, rcc-ccc-ccrf, ...

No-Salient, Flush-Possible,

3. Board Texture Class Straight-Possible, Flush-Highly-Possible,

...

Action Triple (0.0, 0.95, 0.05), (0.6, 0.1, 0.3), ...

Outcome Triple (-∞, 9.0, -3.0), (-2.0, -4.5, -7.0), ...

Similarity Metrics

Once again, each feature requires a corresponding local similarity metric in order to generalise

decisions contained in a set of data.

1. Hand Strength: Similarity between hand strength values is determined by the same metric

used in the two-player limit hold’em domain, as specified by Equation 3.2.

2. Betting Sequence: To determine similarity between three-player betting sequences, a stepped

level similarity metric is used that defines three levels of similarity (level0, level1, level2),

similar to the two-player limit domain.

Given two betting sequences:

level0: is satisfied if the two betting sequences exactly match one another.

level1: is satisfied if the number of bets/raises made by each active player is the same for

each individual, non-current betting round.

level2: is satisfied if the total number of bets/raises made by each active player is the same

for all non-current betting rounds combined.

For level1 and level2 similarity above, the current betting round must match exactly for

two betting sequences to be considered similar. As in the two-player domain, similarity

values of 1.0, 0.9 and 0.8 are assigned to the satisfied similarity level, respectively.
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3. Board Texture: Similarity between board texture values is determined by the same similarity

matrix used in previous domains, as specified in Fig. 3.3.

3.5.2. Multi-Player Limit Experimental Results

We now present results obtained given the case-based strategies produced in the domain of

three-player, limit Texas Hold’em. We present results from the 2011 and 2012 Annual Computer

Poker Competitions, where our multi-player case-based strategies were challenged against some

of the best multi-player limit agents in the world.

2011 AAAI Computer Poker Competition

We submitted a multi-player case-based strategy for the first time at the 2011 ACPC held at the

Twenty-Fifth AAAI Conference on Artificial Intelligence. Our entry, Sartre3P, competed in the

three-player limit Texas Hold’em competition. The results of the 2011 competition are given in

Table 3.17. As with previous ACPC results, two winner determination procedures are displayed

- instant runoff and total bankroll. Sartre3P placed 2nd in the instant runoff division, out of

9 competitors. In this division Sartre3P was beaten only by the competitor Hyperborean.iro.

For the total bankroll division, Sartre3P placed 1st and was the overall winner of this division.

Sartre3P’s average profit was 0.266 ± 0.024 sb/h, which was significantly greater than all other

competitors in the competition. Full cross-table results are presented in Appendix A.

Table 3.17: 2011 multi-player limit bankroll and runoff results. Values are in sb/h with 95%
confidence intervals.

Multi-player Bankroll Runoff Multi-player Total Bankroll Average Won/Lost

1. Hyperborean-3p-iro 1. Sartre3P 0.266± 0.024

2. Sartre3P 2. Hyperborean-3p-tbr 0.171± 0.023

3. LittleRock 3. AAIMontybot 0.130± 0.045

4. dcubot3plr 3. LittleRock 0.122± 0.022

5. Bnold3 5. OwnBot 0.016± 0.035

6. AAIMontybot 6. Bnold3 −0.084± 0.028

7. OwnBot 7. Entropy −0.099± 0.043

8. Entropy 8. player.zeta.3p −0.521± 0.040

9. player.zeta.3p
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2012 AAAI Computer Poker Competition

The same version of Sartre3P that participated in the 2011 competition was re-used for the 2012

competition. No updates were made to the case-bases that Sartre3P used to make its decisions.

The results of the multi-player limit competition are shown in Table 3.18. In both divisions a

third place tie was declared between Sartre3P and Neo Poker Lab. Notice, however, that statis-

tical significance is not guaranteed with these results. When the standard deviations are taken

into account, it is evident that there is a large amount of overlap in bankroll values for all but

the 1st place finisher.

Table 3.18: 2012 multi-player limit bankroll and runoff results. Values are in sb/h with 95%
confidence intervals.

Multi-player Bankroll Runoff Multi-player Total Bankroll Average Won/Lost

1. Hyperborean 1. Hyperborean 0.028± 0.005

2. Little Rock 2. Little Rock −0.004± 0.007

3. Neo Poker Lab 3. Neo Poker Lab −0.011± 0.005

3. Sartre3P 3. Sartre3P −0.012± 0.007

5. dcubot

Discussion

The version of Sartre3P submitted to the 2011 competition employed a novel strategy switching

concept that has not yet been discussed. Strategy switching involves re-using strategies trained

from one poker domain within a separate poker domain. In Chapter 6 of this thesis, we provide

full details of strategy switching and its evaluation.

Overall, the results presented in Table 3.17 provide strong support for the efficacy of case-

based strategies that have been trained on hand history data from previous year’s competitions.

Moreover, the results demonstrate that strategies produced in this top-down fashion actually

have the capability to defeat their bottom-up counterparts, in certain situations.

3.6. Concluding Remarks

In this chapter, we have provided a comprehensive overview of our case-based strategies that

employ a top-down approach by generalising decisions from a collection of data. We began with

a description of the systematic maintenance performed on our strategies in the domain of two-
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player, limit Texas Hold’em. The final result was a framework we have employed to produce

case-based strategies that have achieved top place finishes at international computer poker

competitions, where the best computer poker agents in the world are challenged against each

other. Using the lessons learned and insights obtained from the two-player, limit hold’em do-

main, we extrapolated our framework to handle the more complicated domains of two-player,

no-limit Texas Hold’em and multi-player, limit Texas Hold’em. In the no-limit domain, our

case-based strategies produced the 2nd best computer poker agent as judged by the results of

the 2011 ACPC. In the multi-player, limit domain our agent was the winner of the total bankroll

competition at the 2011 ACPC and achieved the greatest profit against all other competitors.

These results show that the case-based frameworks we have presented are able to produce

strong, sophisticated strategies that are competitive at an international level. In the remain-

ing chapters we will investigate extending the basic framework introduced in this chapter and

we will show that by augmenting imitation-based, top-down strategies with additional capabil-

ities, it is possible to outperform the experts whose decisions were used to train the strategies

in the first place.



Chapter 4

Implicit Opponent Modelling via

Dynamic Case-Base Selection

1In this and the next few chapters, we discuss extensions to the basic frameworks that were

introduced in Chapter 3. Each extension augments the basic framework for producing case-

based strategies in different ways. Recall that the case-based strategies from Chapter 3 were

static, non-adaptive strategies that performed no opponent modelling. The first augmentation

procedure we present introduces implicit opponent modelling into the architecture. Standard

opponent modelling approaches construct a model of their opponent’s play and use this to in-

form how to modify their own strategy. Rather than deciphering the details of an opponent’s

strategy, implicit opponent modelling uses only performance information to determine how to

modify its own strategy. Given a choice of playing actions, decisions that led to positive out-

comes against the opponent are more likely to be selected and actions that led to losses against

the opponent are less likely to be repeated. We detail an implicit opponent modelling approach

in this chapter that constructs multiple case-bases by training on different sets of data and se-

lects at runtime an appropriate case-base to search based on how well each case-base does

against the current opponent. Each case-base attempts to capture a particular style of play of

an original expert. By correctly determining which style to choose against varying opponents,

gains in performance should be possible.

1The contents of this chapter have been modified from an original publication which appeared in the proceedings
of IJCAI 2011. Jonathan Rubin & Ian Watson. On Combining Decisions from Multiple Expert Imitators for Performance.
In IJCAI-11, Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.

117
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4.1. Multiple Case-Bases

Performance in the game of poker is known to have an intransitive relationship, i.e. while player

A beats player B and player B beats player C, it does not necessarily follow that A beats C. Given

the intransitive nature of poker strategies, the successful combination of different styles of play

has the potential to largely improve overall performance. By training on experts with differ-

ent styles of play, we produce several case-bases and create multiple expert imitators in the

domains of limit and no limit Texas Hold’em. We determine whether the performance of in-

dividual expert imitators can be improved by combining their decisions. We compare two ap-

proaches for combining decisions.

The first approach combines decisions using ensemble voting [30], where a final decision is

made by having each expert imitator vote on their preferred action. The second approach com-

bines decisions by dynamically selecting a single expert imitator for each hand of play. This

approach attempts to choose the expert imitator that achieves the greatest profit against a par-

ticular style of play in order to maximise overall profit against a range of opponents. This ap-

proach was originally applied to the game of limit Texas Hold’em in [54, 55] where the UCB1

[7] allocation strategy was applied to dynamically select experts during play. Here we follow

the same procedure described in [55] for dynamically selecting case-bases. Our own research

extends this idea to the more complicated domain of no limit Texas Hold’em. Furthermore,

our work focusses specifically on combining the decisions from multiple expert imitators. A

benefit of this approach is that producing a new strategy simply requires replacing the training

data that is used to construct the case-base. Figure 4.1 depicts an extension to the high-level

architecture, previously presented in Chapter 3, to reflect dynamic case-base selection.

While any learning algorithm that uses training data from a single expert to train a system

can be considered an expert imitator, some learning algorithms are more suited to this partic-

ular purpose than others. For example, the lazy learning [3] of case-based reasoning is partic-

ularly suited to expert imitation where expert observations can be recorded and stored for later

use at decision time. Depending on the particular domain, some CBR systems have demon-

strated successful imitation after making only a handful of observations [68]. In the games

domain, imitation-based learning was successfully demonstrated in simulated robot soccer to

control a multi-agent soccer team [33] and in real-time strategy games, where expert humans

were observed and their decisions used to generate unique strategies [82].

Many classification systems have made use of ensemble decision making to improve accu-

racy. Typically a collection of different learned hypotheses will vote for a particular category.

The category with the most (possibly weighted) votes is the one that is selected. Davidson [28]

used an ensemble approach to predict future actions of an opponent in the domain of limit
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Figure 4.1: An extension to the basic architecture which allows dynamic case-base selection.
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Texas Hold’em. The results showed that having multiple learning algorithms vote improved

overall accuracy compared to just a single learning algorithm.

Rather than having different hypotheses vote on a solution, a more difficult problem in-

volves dynamically selecting an appropriate hypothesis at runtime in order to maximise overall

payoff. Johanson et al. [54] created a collection of exploitive strategies in the game of limit Texas

Hold’em that were designed to exploit particular opponents. They employed the UCB1 update

policy together with showdown DIVAT [12] analysis to select the best exploitive player against a

particular opponent during game play. In this work we apply a similar idea to selecting expert

imitators from separate case-bases in the domain of limit and no-limit Texas Hold’em.

4.2. Expert Imitators

The expert imitators we describe in this work are lazy learners created using the case-based

reasoning methodology. Each expert imitator, Ij , is made up of a collection of cases

Cj = {cj,1, cj,2, . . . , cj,n}

where j refers to the particular expert being imitated and

∀c ∈ Cj , c = (x, a)

where x is a feature vector that captures game state information and a is an action vector

that specifies the probability of taking a certain action, given game state x.

Given a game state described by ct, a decision is made by processing the collection of stored

cases and maximising a global similarity metric to retrieve the most similar case to ct.

cmax = arg max
ck

sim(ck, ct),∀ck ∈ Cj (4.1)

where, sim(c1, c2) is some global similarity metric that determines the similarity between

the feature vectors of the two cases c1, c2.

The retrieved case, cmax, suggests an action (amax) that Ij uses to approximate the decision

that the original expert would have taken, given the current game state.

4.2.1. Action Vectors

The action vectors used to make a betting decision differ depending on whether the limit or no

limit variation is being played. In the domain of limit hold’em the action vector used by the

expert imitator has the following format:
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Table 4.1: A no limit action vector. Bet amounts are mapped into one of the discrete categories
listed.

f fold

c call

q quarter pot

h half pot

i three quarter pot

p pot

d double pot

v five times pot

t ten times pot

a all in

a = (f, c, r)

In the no limit variation, players are allowed to bet or raise any amount including all of the

money or chips they possess (called going all-in). For no-limit we use the mapping introduced

in section 3.4.3. to assign quantitative bet amounts into discrete categories. The no-limit action

vector used by the expert imitators is given by the following:

a = (f, c, q, h, i, p, d, v, t, a)

The significance of each action is reproduced in Table 4.1 for convenience. Once again each

entry corresponds to the probability of taking that particular action and all entries in the vector

sum to 1.0.

4.3. Combining Decisions

Recall that given an action vector, the final action an expert imitator selects can be determined

by one of the following policies:

1. Probabilistic – Select an action probabilistically based on the values specified in the ac-

tion vector. Or,

2. Max Frequency – Select the action within the triple that has the greatest probability value.
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Depending on how we wish to combine decisions, the above two policies are applied in dif-

ferent ways. The first procedure we evaluate for combining decisions from multiple case-bases

uses ensemble voting and requires the use of the max frequency policy for decision making.

4.3.1. Ensemble-based Decision Combination

Given an action vector a = (a1, a2, . . . , an) and a collection of expert imitators I1, I2, . . ., Im,

where each imitator applies the max frequency decision policy, we can derive a vector v =

(v1, v2, . . . , vn), whose elements correspond to the total number of votes each action received.

The final action taken by the ensemble of imitators is given by selecting the action, aj , that

corresponds to the strictly maximum number of votes, vj , if one exists. If a strictly maximum

number of votes does not exist, then the action specified by imitator I1 is used, where I1 is an

arbitrary case-base selected by the author.

4.3.2. Dynamic Case-Base Selection

Rather than using ensemble voting to merge action vectors retrieved from separate case-bases,

a more sophisticated decision combination procedure involves selecting the best action vector

to use from the most appropriate case-base, given the current situation. Combining decisions

in this way is reminiscent of the multi-arm bandit problem.

Multi-arm Bandit Problem

The multi-arm bandit problem is a well known problem in statistics and artificial intelligence.

The problem consists of a gambler and a collection of slot machines (one-armed bandits). Each

slot machine has a particular reward distribution associated with it, which is unknown to the

gambler. The gambler seeks to maximise their overall profit by playing the right machines. The

problem for the gambler is to determine which machine to play next based on the sequence of

rewards they have witnessed so far.

The situation described above depicts a classic example of the exploration/exploitation

trade off. The gambler needs to choose between selecting the machine that has so far of-

fered the greatest reward (exploitation), versus selecting a different machine which may offer

yet a greater reward than that witnessed so far (exploration). The UCB1 [7] algorithm offers

a simple, computationally efficient solution to the multi-arm bandit problem and the explo-

ration/exploitation trade off. Successfully handling the trade off between exploration and ex-

ploitation is a problem that is consistently faced in statistics and artificial intelligence.
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UCB1

To address the problem of dynamic case-base selection we adapt the UCB1 algorithm. The

UCB1 algorithm defines a policy for strategy selection based on the concept of regret. Regret

refers to the difference between the reward that would have been received, had the optimal

strategy always been selected, compared to the actual reward received. The UCB1 algorithm

offers a logarithmic bound on regret.

Given a collection of case-bases, {Cj : j = 1 . . . N}, we perform implicit opponent mod-

elling by dynamically selecting an appropriate case-base to use against a particular opponent.

An individual case-base is dynamically selected at the beginning of every hand. In order to

dynamically select an appropriate case-base at runtime, the following application of UCB1 is

used:

1. Select each case-base once

2. Select case-base, Cj , that maximises the following equation:

arg max
j

x̄j +

√
2 lnn

nj
(4.2)

where,

x̄j is the average amount won by case-base Cj , when challenging the current opponent,

n is the total number of hands played so far, and

nj is the total number of times case-base Cj has been selected.

The UCB1 algorithm above determines the order in which to select different case-bases,

given their performance against a particular opponent. In the computer poker domain, x̄j in

equation (4.2) refers to the average utility (profit or loss) achieved by case-base, Cj , while play-

ing against the current opponent. Similarly, nj refers to the total number of times Cj has been

chosen to play against the current opponent. However, due to the inherent variance present

in the game of Texas Hold’em, strategy selection based on profit alone can severely bias the re-

sults of the UCB1 allocation policy. Hence, efforts to reduce this inherent variance are required

in order to stabilise the results.

Variance Reduction

As in [55], we employ the use of DIVAT analysis [12] in order to improve the average utility

values used by the UCB1 allocation strategy. DIVAT (ignorant value assessment tool) is a perfect

information variance reduction tool developed by the University of Alberta Computer Poker

Research Group. Recall that the basic idea behind DIVAT is to evaluate a hand based on the
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expected value (EV) of a player’s decisions, not the actual outcome of those decisions. DIVAT

achieves this by comparing the EV of the player’s decisions against the EV of some baseline

strategy, see equation 4.3.

EV (ActualActions)− EV (BaselineActions) (4.3)

Equation 4.3 attempts to factor out the effects of luck as both the actual strategy and the

baseline strategy experience the same lucky or unlucky sequence of events. When the player

is able to achieve a greater EV than the baseline, the player is rewarded. Alternatively, if the

player’s actions result in a lower EV then they are punished with a negative outcome. If the EV

of both strategies is the same the outcome is 0.

Finally, DIVAT requires perfect information about both players’ hole cards. When either

player folds this information is not available. Therefore, to calculate the utility values used by

the UCB1 allocation strategy, DIVAT analysis is employed only when a showdown occurs. If a

fold occurs the actual monetary outcome of the hand is used instead.

4.4. Methodology

We provide experimental results in domains of both limit and no limit Texas Hold’em. In each

domain three basic expert imitators (case-bases) were constructed. All expert imitators were

trained on hand history data from the annual computer poker competition [2]. Each expert

imitator was trained on separate data determined as follows:

1. The first expert imitator was trained on decisions made by the agent that won the bankroll

division of the 2010 AAAI computer poker competition.

2. The second expert imitator was trained on decisions made by the agent that won the in-

stant runoff division of the 2010 AAAI computer poker competition.

3. The final expert imitator was our own entry into the 2010 AAAI computer poker competi-

tion.

Both max frequency and probabilistic decision re-use policies were investigated resulting in

a total of three case-bases and six basic expert imitators.

From these six expert imitators we constructed a further two players that combined deci-

sions in the following ways:

1. An ensemble-based player was constructed where each of the basic max frequency expert

imitators voted for a particular action and the action with the most votes was selected.
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The decision of one designated expert imitator, selected by the author, was used in case

all expert imitators voted for a separate action.

2. A dynamic-selection based player was constructed that dynamically selected at runtime

the best basic expert imitator to use against the current opponent. Selection was based

on the UCB1 allocation strategy together with showdown DIVAT analysis. In the limit vari-

ation a bet-for-value baseline strategy was adopted during DIVAT analysis. In no-limit a

more simplistic always-call strategy was used as the baseline.

The Dynamic and Ensemble strategies, along with all six (single case-base only) expert imi-

tators, were then challenged against two different types of computerised players. All matches

played were duplicate matches. A duplicate match involves playing the same 3000 hands twice.

In the first run, 3000 unique hands are played, after which the players’ memories are wiped and

the 3000 hands are played again, but in the reverse direction, i.e. the cards that were initially

given to player A are instead given to player B. This way both players get to play both sets of

cards and this reduces the variance that is involved in simply playing a set of hands in one di-

rection only. All case-based strategies played five duplicate matches against each of the two

computerised opponents. In total, 480,000 hands of poker were played.

4.5. Experimental Results

4.5.1. Limit Results

In the limit domain each expert imitator challenged the following competitors:

1. Fell Omen 2 – A solid Nash equilibrium-based agent commonly used as a benchmark for

testing limit hold’em agents.

2. AlistairBot – An exploitive agent that uses Monte-Carlo simulation to determine the de-

cision with the best EV against the current opponent.

Table 4.2 presents the results of the 8 expert imitators against the above two competitors.

The results are presented in small bets per hand (sb/h), where the total number of small bets

won or lost are divided by the number of hands played. Each original expert imitator begins

with the name of the original expert used to train the system followed by the decision policy

used, i.e. either max frequency or probabilistic. The Sartre-max agent was our entry into the

2010 computer poker competition. Figures 4.2 and 4.3 show the total number of times each

expert imitator was selected via the UCB1 allocation policy (used by Dynamic) to play against

each of the competitors.
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Table 4.2: Expert Imitator Results against Fell Omen 2 and AlistairBot

FellOmen2 AlistairBot Average

Dynamic 0.01342 ±0.006 0.68848 ±0.009 0.35095 ±0.0075

Ensemble 0.00830 ±0.010 0.67348 ±0.010 0.34089 ±0.0100

Rockhopper-max -0.01445 ±0.009 0.69504 ±0.009 0.34030 ±0.0090

PULPO-max -0.00768 ±0.006 0.66053 ±0.024 0.32643 ±0.0150

Sartre-max 0.00825 ±0.014 0.63898 ±0.019 0.32362 ±0.0165

PULPO-prob -0.00355 ±0.011 0.63385 ±0.018 0.31515 ±0.0145

Sartre-prob -0.01816 ±0.006 0.64535 ±0.015 0.31360 ±0.0105

Rockhopper-prob -0.02943 ±0.011 0.63870 ±0.020 0.30464 ±0.0155

4.5.2. Limit Discussion

Overall, the results presented in Table 4.2 supports the idea that combining decisions from mul-

tiple case-bases can improve performance over a single case-base alone. Against Fell Omen

2, Dynamic does better than any other expert imitator. Against AlistairBot, the expert imitator

trained on the Rockhopper agent, using a max frequency betting policy, fares the best. Com-

bining the results against the two opponents and taking the average sees Dynamic achieve the

best average outcome, followed by Ensemble. However, care must be taken in interpreting these

results as there is overlap between the standard deviations.

Also depicted in the results are plots showing the total number of times each original expert

imitator was selected via the UCB1 allocation strategy to play against Fell Omen 2 (Figure 4.2)

and AlistairBot (Figure 4.3). Table 4.2 suggests that the expert imitator Sartre-max did the best

out of all the original imitators against Fell Omen 2, achieving a profit of +0.00825 sb/h. In

particular, Sartre-max was the only original imitator to achieve a slight profit against Fell Omen 2,

whereas the other 5 achieved slight losses. It was therefore thought by the author that this agent

would be selected the most by Dynamic when challenging Fell Omen 2, however this appears

not to be the case. Instead, Figure 4.2 shows that Rockhopper-max was selected the most overall,

followed by Sartre-prob and Sartre-max in third place. A similar scenario is depicted in Figure

4.3, where PULPO-prob is selected by far the most, whereas the obvious choice (Rockhopper-

max, as it achieves the greatest profit of +0.69504 sb/h against AlistairBot) is only 3rd on the

list. These discrepancies are likely due to a combination of variability in the data and possibly

exaggerated utility values within the UCB1 allocation strategy, caused when variance reduction

is not able to take place, such as when a fold occurs.
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Figure 4.2: Shows the total number of times each expert imitator was selected to challenge Fell
Omen 2

Figure 4.3: Shows the total number of times each expert imitator was selected to challenge
AlistairBot
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Table 4.3: Expert Imitator Results (No Limit) against MCTSBot and SimpleBot

MCTSBot SimpleBot Average

Hyperborean-max 1.7781 ±0.216 0.7935 ±0.095 1.2858 ±0.156

Dynamic 1.3332 ±0.164 0.5928 ±0.065 0.9630 ±0.115

Ensemble 1.3138 ±0.053 0.5453 ±0.065 0.9295 ±0.059

Hyperborean-prob 1.1036 ±0.184 0.5075 ±0.104 0.8055 ±0.144

Sartre-max 0.9313 ±0.131 0.5248 ±0.036 0.7281 ±0.086

Sartre-prob 0.4524 ±0.118 0.3933 ±0.082 0.4228 ±0.100

Tartanian-max 0.1033 ±0.505 0.3450 ±0.098 0.2242 ±0.302

Tartantian-prob -0.0518 ±0.142 0.4221 ±0.036 0.1852 ±0.089

4.5.3. No-Limit Results

In the no-limit domain each expert imitator challenged the following opponents:

1. MCTSBot – an exploitive agent that uses Monte-Carlo Tree Search [115].

2. SimpleBot – a no-limit rule-based agent.

The opentestbed2 project was used to gather results as the above no-limit agents were made

publicly available within this framework. Table 4.3 presents the no-limit results. The results

are in big blinds per hand. Once again Figures 4.4 and 4.5 show the total number of times

an expert imitator was selected via the UCB1 allocation strategy to play against the above two

competitors.

4.5.4. No-Limit Discussion

While both Dynamic and Ensemble achieve high placings in the no-limit results (2nd and 3rd,

respectively). Table 4.3 suggests that they were not able to improve upon the performance of

a single case-base, i.e. Hyperborean-max. Here Hyperborean-max performs the best against both

MCTSBot and SimpleBot, suggesting that an alternative choice of opponent may be required in

order to receive any benefit by combining decisions from multiple case-bases. In both Figures

4.4 and 4.5, Sartre-max was selected the most by Dynamic, followed by Hyperborean-max.

The altered betting structure from limit to no-limit had a few follow on effects when it came

to dynamically selecting case-bases. Firstly, the amount of money invested by each player is

typically larger than in limit poker. This can result in larger swings in the utility values used by

2http://code.google.com/p/opentestbed/
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Figure 4.4: Shows the total number of times each no limit expert imitator was selected to chal-
lenge MCTSBot

Figure 4.5: Shows the total number of times each no limit expert imitator was selected to chal-
lenge SimpleBot
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the UCB1 allocation strategy. Furthermore, in no-limit a lot more hands end when one player

folds to another player’s bet, compared to limit where a lot more hands proceed all the way

to a showdown. Showdown DIVAT (as its name suggests) can only be applied when a show-

down is reached. The increased proportion of fold actions observed in no-limit poker results in

less variance reduction taking place on the utility values used by UCB1 and hence could have

resulted in possibly selecting an inappropriate case-base a lot more often than was necessary.

4.6. Concluding Remarks

In this chapter, we extended the basic architecture introduced in Chapter 3 by constructing

multiple case-bases and combining the different solutions they suggested in order to deter-

mine playing decisions. We compared two separate approaches for combining decisions from

multiple case-bases in an attempt to improve performance. The first approach used ensem-

ble voting to merge action vectors. The second approach dynamically selected case-bases at

runtime, based on their performance against a particular opponent. This is a form of implicit

opponent modelling, as decisions were made based solely on performance information, rather

than by constructing more sophisticated models of the opponent.

Overall, combining decisions either via ensemble voting or dynamic case-base selection at

runtime appears to improve performance. In the limit variation, combining decisions was able

to produce better results than relying on one expert alone. This is likely due to the intransitive

nature of poker strategies. In the no-limit variation, dynamic selection did better than most

single expert imitators alone, but was not the overall best strategy to use. This could be due to

the fact that we simply have not tested against a diverse enough set of opponents and therefore,

no benefit was received by selecting different expert imitators, or that further improvements to

the variance reduction techniques used in the no-limit domain are required to stabilise the

results.

In the next chapter, we present a second extension to the architecture of Chapter 3. Our sec-

ond augmentation procedure performs explicit opponent modelling by capturing information

about the opponent’s style of play. As will be discussed in Chapter 5, this opponent modelling

information is made use of to adapt case solutions against specific opponents. This leads to

both adaptive and exploitive strategies.



Chapter 5

Explicit Opponent Modelling via

Opponent Type Solution Adaptation

1In the domain of computer poker, exploitive strategies can be produced by performing either

implicit or explicit opponent modelling. The previous chapter introduced implicit opponent

modelling, which does not attempt to decipher the details of an adversary’s strategy, but instead

attempts to select an appropriate response from a range of strategies based on performance in-

formation against the opponent. On the other hand, explicit opponent modelling does concern

itself with discovering details about an opponent’s strategy and, in particular, any weaknesses

within that strategy. This information is then used to alter the agent’s own strategy in an attempt

to improve overall performance. In this chapter, we describe a second augmentation procedure

that uses explicit opponent modelling to produce exploitive and adaptive case-based strategies.

We describe how adaptation can be applied to a precomputed, static case-based strategy in or-

der to allow the strategy to rapidly respond to changes in an opponent’s playing style. The work

described in this chapter differs from Chapter 4, as rather than implicitly exploiting opponents

by selecting from a range of static strategies, exploitation instead occurs in a more explicit man-

ner by modifying the details of a single strategy directly via adaptation, given a certain opponent

type. The exploitive strategies produced by this approach tend to hover around a precomputed

solid strategy and adaptation is applied directly to the precomputed strategy once enough in-

formation has been gathered to classify the current opponent type. The use of a precomputed,

seed strategy avoids performance degradation that can take place when little is known about

an opponent. Augmenting our case-based strategies in this way has an advantage over other

1The contents of this chapter originally appeared in the proceedings of the Twentieth International Conference on
Case-Based Reasoning (ICCBR 2012). Jonathan Rubin & Ian Watson. Opponent Type Adaptation for Case-Based Strate-
gies in Adversarial Games. In Case-Based Reasoning Research and Development - 20th International Conference (ICCBR
2012) [96].
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exploitive strategies whose playing decisions rely on large, individual opponent models con-

structed from scratch.

5.1. Opponent Type Based Adaptation

Actions selected by a case-based strategy can either be applied directly or can be modified/adapted

to better account for the current situation. In previous chapters, solution vectors were simply

re-used and no attempt was made to adapt these solutions at all. Adaptation is typically re-

quired when the current environment and similar past environments are no longer identical,

but instead differ in particular ways.

In some gaming environments, making use of knowledge recorded about an adversary can

dramatically improve overall performance. In this chapter, we describe an extension to the

frameworks introduced in Chapter 3 that records information about particular opponent types

and uses the information gathered to affect the selection of actions via adaptation.

Rather than employing adaptation to handle moderate differences in gaming environments,

as done by other case-based strategies in adversarial environments [80, 112, 8, 38] we apply

adaptation based on the playing style of a current opponent. In this way we are able to gen-

erate case-based strategies that are both exploitive and adaptive i.e. they can rapidly respond

to changes in the playing style of a current opponent and they do so in a way that attempts to

improve overall performance.

To begin with we construct an offline model that captures information about a set of op-

ponent types. The information contained within this model becomes the basis for informing

future adaptation based on the type of opponent currently being challenged. The exploitive

strategies produced by this approach hover around a precomputed solid strategy and adapta-

tion is applied directly to the precomputed strategy once enough information has been gath-

ered about the current opponent type. Figure 5.1 illustrates a high-level overview of the aug-

mentation procedure. Here the environment refers to the actual game being played. Given

information from the environment, opponents are classified into a certain type. Once the op-

ponent type is known, an opponent model is queried that dictates the type of adaptation that

should be applied to case solutions against this opponent. Given the adaptation suggested by

the opponent model, this is applied to the current environment.

Our approach has two major advantages over exploitive strategies that construct large op-

ponent models in real-time:

1. Firstly, our approach relies on opponent type classification and not on the construction

of a fully-fledged, real-time opponent model. As such, the time required to collect data
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Figure 5.1: Opponent modelling guided adaptation overview

to classify an opponent is substantially less than the time required to build an accurate

opponent model from scratch.

2. Second, exploitive strategies whose playing decisions rely on detailed opponent models

require an expensive exploration phase during which sparsely populated opponent mod-

els can negatively impact performance. On the other hand, seeding a game playing agent

with a robust, precomputed strategy, avoids the performance degradation that can take

place when little is known about an opponent.

5.2. Alternative Approaches

Alternative approaches that perform explicit opponent modelling construct exploitive strate-

gies by starting with an empty opponent model and populating the model in real-time dur-

ing game play. Two such efforts that use this approach are described in [19] and [102]. Both

approaches use imperfect information game tree search in order to construct adaptive and

exploitive strategies. They build specific models about an opponent and use these to inform

exploitive betting actions. A disadvantage of this approach is that the opponent models re-

quired are typically very large and constructing the opponent model can initially take some

time, which will negatively impact performance when little is known about the current oppo-

nent. The work described in this chapter overcomes this problem by effectively seeding the

agent with a precomputed, solid strategy and later applying adaptation to this strategy once

enough information has been gathered about the current opponent’s playing style. Moreover, a

fully-fledged opponent model is not required to be constructed at runtime. Instead, all that is

required is opponent type information, captured by a collection of summary statistics. Gather-
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ing this information at runtime is quick, resulting in rapid classification, which allows exploitive

adaptation to take effect earlier.

Adaptation also plays an important role in the area of case-based planning [49]. Instead of

constructing plans from scratch, case-based planning retrieves previously stored plans based

on how similar they are to the current environment. Both case-based planning and case-based

plan adaptation [74] are areas of research that have received considerable attention. Case-

based plan adaptation has proved successful in adversarial, gaming environments, such as real-

time strategy games [112, 80], where rather than simply re-using a previously stored plan, re-

trieved plans are modified to better suit the environment an agent currently finds itself in. The

adaptation that we perform in this work differs from that of case-based plan adaptation as we

do not rely on plans to determine an agent’s actions. Moreover, case-based plan adaptation typ-

ically does not consider the specific type of opponent when determining how to adapt plans,

instead adaptation is affected only by differences between the present environment and simi-

lar past environments. In this work the adaptation performed varies in response to the specific

opponent type encountered.

5.3. Adaptation

Within a case-based strategy, case features are used to capture the current state of the environ-

ment and a case’s solution dictates which actions are appropriate to apply, given the current

state. Within our experimental domain of computer poker, case solutions are represented by

probabilistic action vectors that specify the proportion of the time to select a particular action.

Adaptation is applied directly to the case’s solution vector. Adapting a solution vector sim-

ply consists of shifting probabilities from one action to another. By shifting probability values,

solution vectors can be made more aggressive (aggressify) or more defensive (defensify). A vec-

tor is made more aggressive by reducing the probability of playing defensive actions, such as

checking or calling, and increasing the probability of more aggressive actions, such as betting

or raising. Consider the following example that aggressify’s an initial probability vector by 10%.

The vector involves three possible actions (fold, call, or raise).

(0.1, 0.4, 0.5)
aggressify{0.1}
−−−−−−−−→ (0.1, 0.36, 0.54)

In the example above, 10% of the call portion of the vector has been shifted over to the raise

portion, resulting in a strategy that will act more aggressively.

Solution vectors can also be made more defensive, as in the following example:

(0.1, 0.4, 0.5)
defensify{0.1}
−−−−−−−−→ (0.1, 0.45, 0.45)
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here the probability of performing an aggressive action is lessened in favour of performing

a more defensive check or call action.

5.3.1. Offline Opponent Type Model Construction

Given that we have a straightforward procedure for adapting probabilistic solution vectors, we

now describe the construction of an offline opponent type model that employs the adaptation

procedure.

5.3.2. Aggression Response Trends

The adaptation procedure described above allows an existing solid strategy to lay the founda-

tion for an eventual exploitive strategy. While the details of how the adaptation is performed are

straightforward, it is less obvious exactly what adaptation should occur, i.e. should the action

vector be aggressified or defensified, and if so, by how much? In order to answer these questions

it was necessary to construct an initial model of what impact adaptation has on performance

against a collection of opponents with diverse playing styles. We refer to the set of opponents

used to construct the offline model as the known set of opponents.

Figure 5.2 shows how performance can be altered against certain opponent types by sys-

tematically varying the type and amount of adaptation applied to solution vectors. We refer to

the performance trends produced in Figure 5.2 as aggression trends. The aggression trends cap-

ture important information about the effect adaptation has on strategy performance against

particular types of players. The aggression trends in Figure 5.2 were derived by blindly adapting

action vectors, i.e. by selecting a single adaptation factor and holding it constant. Adaptation

factors within the spectrum of -0.1 to +0.1 were selected, where a negative sign represents de-

fensifying an action vector and a positive sign indicates aggressifying the vector. In other words,

the leftmost point in each figure depicts the result of defensifying the action vectors by 10% and

the right most point depicts the result of aggressifying vectors by 10% where all adaptation fac-

tors in between vary by 1%. Null adaptation (i.e. an adaptation factor of 0) is represented by

the middle point in the figures. The aggression trends shown in Figure 5.2 highlight the fact

that different adaptation strategies are required against different types of opponents. In partic-

ular, the leftmost trend in Figure 5.2 depicts a response against a particular type of player that

is inclined towards increased aggression. The middle trend depicts a situation where it is not

appropriate to adapt solution vectors at all against this opponent as null adaptation performs

best. Finally, the rightmost trend depicts the opposite situation to the first trend, where it is

appropriate against this opponent to further defensify solution vectors.
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Figure 5.2: A subset of aggression trends computed during an initial training phase. Adaptation
was performed within the spectrum of -0.1 to +0.1, with stepped gradations of 0.01 in between.

5.3.3. Opponent Type

Obtaining knowledge of aggression response trends associated with particular players is bene-

ficial in a number of respects. First of all, we have evidence that the adaptation procedure de-

scribed previously can have a beneficial impact on overall performance. Secondly, when chal-

lenging the same opponent again we can expect to improve overall performance by adapting

solution vectors according to the resultant aggression trend. However, we would be severely

restricted if we could only ever use the computed aggression trends against the exact same op-

ponent. Instead, we wish to be able to use the information we have gathered to exploit further

opponents that have never been encountered before. In order to do this we need to associate

each aggression trend not with a particular opponent, but with a particular type of opponent.

There are various ways opponents could be classified to belong to a certain type. One ap-

proach that human online poker players employ to classify opponents is to keep track of sta-

tistical information about an opponent, such as the amount of money they voluntarily commit

to the pot, the proportion of times they perform the raise action in a certain round, or their

overall aggression factor. This information attempts to capture the general flavour of an oppo-

nent’s style of play, such as how aggressive or defensive their strategy is. By recording action

frequency information about an opponent, salient information can be captured about their

particular style of play.

Within our current model, we capture information about opponent types by recording (for

each of the four betting rounds) frequency information about fold, check, call and bet actions

that were taken by the opponent. Therefore, in total each opponent type is described by a vector



CASE-BASED STRATEGIES IN COMPUTER POKER 137

Figure 5.3: Problem-Solution space mapping for opponent types.

of 16 numerical values. By representing opponent types in this way we are able to perform

similarity assessment between opponent types using Manhattan distance.

Taken together these opponent type action frequencies and their corresponding aggression

trends compose an offline opponent type model that can be used to adapt solution vectors when

challenging novel opponents by computing similarity between opponent type vectors. Figure

5.3 illustrates the idea of a mapping between opponent types (the problem space) and their

corresponding aggression trends (solution space) that can be used to adapt vectors against that

type of opponent.

5.4. Online Adaptation

5.4.1. Adapted Strategies

Once the opponent type model has been constructed we use the information contained within

the model to inform how solution vectors should be adapted. Equation 5.1 uses information

from the opponent type model to probabilistically select an appropriate adaptation factor for

each hand of play:
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∀i∈1...N ,

P (xi) =
max{outcome(xi)− outcome(xpivot), 0}∑N
i max{outcome(xi)− outcome(xpivot), 0}

(5.1)

In Equation 5.1, xi is an adaptation factor that dictates the proportion of actions that should

be defensified/aggressified within the original vector, outcome(xi) refers to the result of applying

adaptation factor xi against this particular type of opponent, which is retrieved from the model,

outcome(xpivot) is the result of applying null adaptation against this opponent type (once again

retrieved from the model) and finally,N refers to the total number of adaptation factors to con-

sider per hand, i.e. not all adaptation factors are considered for use, only a subset of the top N

factors.

In other words, Equation 5.1 selects adaptation factors based on how much they were able to

improve upon not applying adaptation at all, as specified by the outcome values in our model.

When N = 1, the adaptation factor that achieved the largest improvement in outcome is se-

lected with probability 1.0, whereas when N = 5, the top 5 (profitable) adaptation factors are

selected probabilistically. In the case where ∀i∈1...N , P (xi) = 0, null adaptation is performed.

5.4.2. Adaptation during Game Play

During game play, betting frequencies (fold, check, call and bet) for all four rounds of play are

recorded about the current opponent and used to classify them as a certain type. However,

instead of keeping track of every action the opponent has taken, only a subset of actions are

recorded that affect opponent type classification. This subset includes only the latest M hands

of play, where M is some specified constant2. This ensures that our adapted strategies can re-

spond to recent changes in an opponent’s playing style. For the first M set of hands played

against an opponent no adaptation is performed and actions are selected directly from the pre-

computed strategy. OnceM hands have been played, adaptation can occur and an appropriate

aggression trend is selected from the model by retrieving the opponent type with the most sim-

ilar bet frequency information, using Manhattan distance.

5.5. Methodology

In order to evaluate our adapted strategies we require a series of opponents, both for training

the initial model and for challenging once the model has been constructed. At the 2011 AAAI

2Within our current implementation we use a value ofM = 300



CASE-BASED STRATEGIES IN COMPUTER POKER 139

Computer Poker Competition a number of computer poker agents were submitted to the limit

Texas Hold’em event. The agents submitted to the AAAI competition represent some of the top

computer poker players in the world, so it would be beneficial to evaluate opponent type adap-

tation against this set of opponents. While it is not possible to challenge the original agents

submitted to the competition (as none of them are publicly available), we are able to make

use of the publicly available hand history information to create expert imitators that attempt to

imitate and generalise their style of play. By making use of the expert imitation based frame-

work described in Chapter 3 and training on the subset of decisions made by a particular expert

agent, we constructed a set of 20 opponents that imitate each of the agents submitted to the

2011 AAAI Computer Poker Competition. These imitation-based agents were used within our

experimental set up.

These 20 opponents were challenged against 5 adaptation strategies given by Equation 5.1,

where N varied from 1 to 5, plus 1 null-adapted strategy that involved no adaptation. From the

set of original opponents two groups were created – a known set of opponents and an unknown

set. Of the 20 original opponents 75% (15 opponents) were randomly assigned to the known

group and were used to derive the model that would inform adaptation, the remaining 25% (5

opponents) were assigned to the unknown group that were left out of the model construction.

Results were gathered against both the known and unknown set of opponents, where all 5

adapted strategies and the null-adapted strategy played 10 seeded duplicate matches against

each opponent. Each duplicate match consisted of 6000 hands in total, where 3000 hands are

initially played, after which players switch seats and the same 3000 hands are played again,

so that each player receives the cards their opponent would have received before. This type

of duplicate match set up was used to decrease variance. In order to further decrease overall

variance, common seed values were used for duplicate matches so that each separate opponent

match-up that occurred resulted in the same set of cards being dealt between players.

In the first experiment, adapted strategies were challenged against the known set of oppo-

nents. This represents a situation where previous knowledge about an opponent can inform

present playing decisions and is akin to a scenario where a human poker player challenges a

known opponent who they may have challenged before. Both human and artificial poker play-

ers are also required to challenge opponents they have never encountered before. The second

experiment, involving the unknown set of opponents, represents this scenario, where no ag-

gression trend or previous bet frequency information is known about the opponent and instead

adaptation must occur by comparing how similar a novel opponent is to a previously known

opponent style.
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5.6. Experimental Results

Table 5.1 presents the results against the first set of known opponents (i.e. opponents whose ex-

act aggression trends have been computed). The outcome and 95% confidence interval of each

match is depicted in milli-big blinds per hand from the perspective of the row player (i.e. NoAd-

apt, Adapt1, Adapt2, . . ., Adapt5). Milli-big blinds record the average number of big blinds won

per hand, multiplied by 1000. The opponent challenged is given as the column heading and the

table is split into two sections (due to spatial limitations). The outcomes presented in the table

are colour-coded as follows: grey cells represent the outcome against an opponent when no

adaptation was performed. Darkly shaded cells indicate statistically significant improvements

(green) or degradations (red), after applying adaptation. Lightly shaded cells indicate the ob-

served outcome, after adapting case solutions, was statistically insignificant (once again light

green for improvement and light red for degradation in performance).

Table 5.2 presents the results against the second set of unknown opponents (i.e. opponents

where no aggression trend information is previously known). The same colour-coding scheme

is used.

5.7. Discussion

A large proportion of Table 5.1 consists of darkly shaded green cells, indicating significant im-

provement in performance after solution adaptation. On average (the bottom right column in

Table 5.1), all adaptation strategies (N = 1 . . . 5) were able to improve on the performance of

no adaptation and in all but one of these cases (N = 2) the improvement witnessed was sta-

tistically significant with 95% confidence. The results suggest that the adaptation information

recorded within the opponent type model is appropriate and can be used to improve overall

performance against a set of opponents that have been previously challenged.

In Table 5.2, less of the squares are darkly shaded green than in Table 5.1, however there

is still more improvement (both significant and insignificant) witnessed than there is degra-

dation in performance. The results in Table 5.2 show that even though no information was

previously known about this set of opponents, our approach still results in an improvement in

performance for all adaptation strategies (N = 1 . . . 5) and in two of those cases (N = 4 and

N = 5) the outcome is a statistically significant improvement in performance with 95% con-

fidence. These results suggest that our approach has made an appropriate determination in

regard to the adaptation to apply when challenging a novel opponent, given the similarity of

the opponent to a known opponent.
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Table 5.2: Opponent type adaptation results against second unknown set of opponents.

Entropy Hyperborean-iro 2Bot LittleRock Calamari Average

NoAdapt 436± 4 25± 2 61± 3 6± 2 −4± 2 105± 2

Adapt1 456± 5 25± 3 65± 3 −4± 3 −1± 1 108± 3

Adapt2 454± 4 21± 2 61± 2 −5± 2 1± 2 106± 2

Adapt3 448± 4 20± 2 56± 3 9± 3 8± 2 108± 3

Adapt4 463± 4 23± 2 57± 3 18± 2 1± 2 112± 2

Adapt5 462± 4 23± 1 70± 3 2± 2 −4± 2 111± 3

5.8. Concluding Remarks

In this chapter, we presented an augmentation procedure that extends the basic frameworks

introduced in Chapter 3. We detailed the augmented procedure for adapting case-based strate-

gies within adversarial environments. Rather than adapting case solutions based on differences

between environmental states our adaptation procedure takes into account information about

opponent types and adapts solutions in an attempt to exploit an opponent currently being chal-

lenged. This was achieved by first constructing an offline opponent type model that recorded

appropriate aggression trends in response to a set of opponent types. The information cap-

tured within this model was later extrapolated during game play in order to inform probabilis-

tic adaptation strategies. Our experimental results show that altering a precomputed strategy

via adaptation was able to successfully improve overall performance, compared to not adapt-

ing the precomputed strategy. Moreover, the adaptation strategies produced were shown to

be successful against both known and unknown opponents. In the next chapter we introduce

the third and final extension to the frameworks of Chapter 3. Our final augmentation proce-

dure employs transfer learning to leverage information recorded in case-bases from separate

domains in order to improve overall performance.



Chapter 6

Strategy Switching via Case-Based

Transfer Learning

1Chapter 4 introduced an augmentation procedure that made playing decisions by selecting

cases from multiple case-bases and described procedures for combining those decisions. In

Chapter 4, all cases-bases that could influence the final playing decision were from the same

poker domain. When multiple case-bases exist from separate poker domains, such as limit/no-

limit domains or single/multiple opponent domains, the question arises whether we can make

use of the information captured from one domain and apply it within a separate domain which

it was not originally intended for. In order to do so, we require a suitable mapping between

domains. This chapter describes possible mappings that allow this type of transfer learning [84]

to take place. We introduce the concept of strategy switching, which identifies moments during

game-play when it may be useful to leverage information within case-bases from alternative

domains. Figure 6.1 extends the architecture initially introduced in Figure 3.1 from Chapter

3. Distinct case-bases are constructed by recording decisions observed within different game

domains. An inter-domain mapping is required to bridge the gap between these distinct case-

bases. Given a reasonable mapping, information collected from one domain may be leveraged

by a case-based strategy that makes playing decisions in a totally separate environment.

1The contents of this chapter have been modified from a short paper that was presented at the First Computer Poker
Symposium at AAAI 2012. Jonathan Rubin & Ian Watson. Sartre3P: A Case-Based Multiplayer Poker Agent. In the
Twenty-Sixth AAAI Conference on Artificial Intelligence, Computer Poker Symposium, 2012 [98].
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6.1. Strategy Switching

In this thesis we have investigated three poker sub-domains as experimental test-beds: two-

player limit; two-player no-limit and three-player limit. Each domain produced one or more

case-bases. None of the augmentation procedures from previous chapters attempted to search

case-bases from multiple, separate poker domains. In this chapter, we investigate the use of

transfer learning between the two-player limit and multi-player limit domains, i.e. we deter-

mine how we can we leverage information recorded in a two-player case-base to make bet-

ter decisions in a multi-player domain. In the three-player domain, when one opponent folds

it would be useful if the case-based strategies, previously developed for heads-up play, could

be used to make a betting decision. Consider the following pseudocode, where s refers to the

choice of a particular strategy:

s← ∅
if fold occurred then

if ∃ inter-domain mapping then

s← heads-up strategy

else

s←multi-player strategy

end if

else

s←multi-player strategy

end if

The pseudocode above requires a mapping between two separate domains in order to allow

a heads-up strategy to be applied within a multi-player environment. One way that this can

be achieved is to develop a similarity metric that is able to gauge how similar a game state

encountered in a multi-player domain is, compared to a corresponding state in heads-up play.

Given our case representation for heads-up strategies, presented in Chapter 3 Table 3.4, we

require a suitable inter-domain mapping for the betting sequence attribute.

6.1.1. Inter-Domain Mapping

A mapping can occur between domains as long as one player has folded in the three-player

domain. There are various ways an inter-domain mapping can take place between a three-

player betting sequence and a two-player betting sequence. To determine how similar a three-

player betting sequence is to a two-player betting sequence, we need to first map the actions

of the two remaining players in the three-player domain to actions of an appropriate player in
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Figure 6.1: Case-based transfer learning architecture extension.

the two-player domain. An appropriate player is selected by considering the order in which the

players act. We refer to this as an inter-domain player mapping.

We can determine how similar two betting sequences from separate domains are by count-

ing the total number of bet/raise decisions taken by an active player in the three-player domain

and comparing this with the total number of bet/raise decisions made by the corresponding

player in the two player domain, as specified by the player mapping. This ensures that the

mapping between domains retains the strength that each player exhibited by betting or raising.

Fig. 6.2 illustrates a possible player mapping that takes place when a fold has occurred dur-

ing the preflop round of play. The abbreviations in Fig. 6.2 stand for Dealer (D), Non Dealer

(ND), Small Blind (SB) and Big Blind (BB). The connections between the two domains (i.e.

the red arrows) specifies the player mapping and are further explained below.

1. D → D: As the Dealer is the last player to act postflop (in both domains) the total number

of preflop raises made by D in the three-player domain, must match the total number of

preflop raises made by D in the two-player domain for the inter-domain sequences to be

considered similar.

2. SB → ND: As the SB is the first player to act postflop (in the three-player domain) and

the ND is the first player to act postflop (in the two-player domain), the total number of

preflop raises made by the SB must match the total number of preflop raises made by the

ND for the inter-domain sequences to be considered similar.



146 JONATHAN RUBIN

Figure 6.2: Demonstrates how inter-domain mapping is performed for betting sequences when
a fold takes place on the first betting round in the three player domain. Each node represents a
particular player position within their domain.

3. BB → D/ND: For the final mapping, the order in which the BB acts depends on which

player folded in the three-player domain (SB or D). If the SB folded, the BB will act first

postflop and hence, the total number of preflop raises made by the BB must match the

total number of preflop raises made by theND. On the other hand, if theD was the player

that folded, the BB will act last postflop and hence, the total number of preflop raises

made by the BB must match the total number of preflop raises made by the D instead.

The above mapping works by ensuring a two-player betting sequence exists where the total

number of preflop raise actions made by each player are equal to the total preflop raise actions

made by the two remaining players in the three-player domain.

6.2. Inter-Domain Mapping Example

Here we provide a concrete example that illustrates the result of this inter-domain mapping.

Consider the three-player betting sequence that takes place on the flop:

frc− r

The preflop action proceeds as follows: D folds, the SB raises and theBB calls. As a fold has

occurred we can apply inter-domain mapping. The player mapping introduced in Fig. 6.2 tells

us that:
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SB → ND

BB → D

Hence, we require a two-player betting sequence that involves a single raise by the ND in

the first round. The only legal two-player betting sequence that is appropriate, is as follows:

crc− r

Where, D checks, the ND raises and the D calls. As a sufficiently similar sequence has been

found, future betting decisions would be based on the above two-player sequence.

Notice that the two-player betting sequence:

rc− r

which looks similar to the original three-player sequence (frc− r), would not be considered

similar via the inter-domain mapping. While this sequence looks similar to the three-player

sequence above, it nevertheless confuses the order in which bets/raises were made and would

not accurately capture the important strength information that is captured by the mapping we

have described.

6.3. Methodology

We evaluate the effect of strategy switching by comparatively evaluating non-switching strate-

gies with their switching counterparts in the domain of three-player, limit Texas Hold’em. The

metric used to determine similarity between betting sequences differs depending on whether

strategy switching is enabled or not.

Without Switching When strategy switching is not enabled a three-player case-base will be

searched that contains three-player betting sequences only.

With Switching When strategy switching is enabled an inter-domain similarity metric is re-

quired that is able to determine similarity between the current three-player betting se-

quence and the two-player sequences contained within the case-base. We use the metric

described in section 6.1.1..

We produced two sets of case-based strategies (one with switching, and one without) in or-

der to determine the affect that strategy switching had on performance. Both strategies were
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challenged against the two multi-player, limit agents: dpp and akuma, which have been made

publicly available by the Knowledge Engineering Group at Technische Universität Darmstadt

[27]. The agent dpp is described as a “mathematically fair bot” that does no opponent mod-

elling when making decisions, whereas akuma uses Monte-Carlo simulation with opponent

modelling.

Both non-switching and switching case-based strategies were challenged against dpp and

akuma for a total of 10 matches, where each match played consisted of 1000 duplicate hands.

Recall from Section 1.2.2., that a three-player duplicate match involves six seat enumerations

in order for each agent to experience the same game scenarios as their opponents, therefore

each match involved playing 6000 hands. Finally, each of the 10 duplicate matches were seeded

so that the scenarios encountered by the non-switching strategy were the same as those en-

countered by the switching strategy. This reduces the influence that the stochastic nature of

the game has on the results.

6.4. Experimental Results

The final results are presented in small bets won per hand with a 95% confidence interval in

Table 6.1. Results are from the perspective of the row player. In the first column our player,

CaseBased3P, didn’t use switching. The second column presents results when switching was

enabled. Against akuma and dpp, our agent achieved a win rate of 0.2101 sb/h using a non-

switching strategy. When strategy switching was employed, our agent improved this win rate

to 0.2218 sb/h – an increase of 0.0117 sb/h. For both sets of matches, akuma also achieved a

positive win rate. When challenging dpp and our non-switching strategy, akuma’s win rate was

0.0898 sb/h and when challenging dpp and our switching agent this dropped slightly to 0.0875.

For both sets of matches, dpp was not able to achieve a profit.

We submitted our multi-player agent, which employed strategy switching, to the 2011 AAAI

Computer Poker Competition. Our entry to the 2011 multi-player limit competition was Sartre3P.

Table 6.2 reproduces the results of this competition. Out of a total of 9 competitors, Sartre3P

placed second in the instant runoff division and won the total bankroll division of the compe-

tition, achieving a win rate of 0.266 sb/h. Table 6.2 shows that Sartre3P wins this competition

by a substantial margin. In particular, Sartre3P achieves 0.095 sb/h more than the second place

finisher Hyperborean.
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Table 6.1: Multi-player case-based strategy results with and without strategy switching.

Non-Switching Switching

CaseBased3P 0.2101± 0.004 0.2218± 0.004

akuma 0.0898± 0.003 0.0875± 0.004

dpp −0.2995± 0.004 −0.3093± 0.004

Table 6.2: 2011 multi-player limit bankroll and runoff results.

Multi-player Bankroll Runoff Multi-player Total Bankroll Average Won/Lost

1. Hyperborean-3p-iro 1. Sartre3P 0.266± 0.024

2. Sartre3P 2. Hyperborean-3p-tbr 0.171± 0.023

3. LittleRock 3. AAIMontybot 0.130± 0.045

4. dcubot3plr 3. LittleRock 0.122± 0.022

5. Bnold3 5. OwnBot 0.016± 0.035

6. AAIMontybot 6. Bnold3 −0.084± 0.028

7. OwnBot 7. Entropy −0.099± 0.043

8. Entropy 8. player.zeta.3p −0.521± 0.040

9. player.zeta.3p

6.5. Discussion

The results presented in Table 6.1 and 6.2 provide further support regarding the efficacy of top-

down, case-based strategies when compared with agents that employ alternative approaches.

Results from Table 6.1 show that extending the basic case-based frameworks introduced in

Chapter 3 leads to performance improvements. Firstly, notice that the case-based strategies

produced (whether switching or non-switching ) are able to beat both opponents at a signifi-

cant level. Second, the results show that multi-player case-based strategies with switching are

able to achieve a greater overall profit than strategies that don’t switch. The win rate difference

observed is significant with 95% confidence. As long as the mapping does not destroy the in-

formation about the current game state, we are able to make use of the more detailed heads-up

strategies, which positively affects performance.

Results from the 2011 ACPC in Table 6.2 show that the combination of case-based strategies

with strategy switching can produce very strong play. In this competition our top-down, case-
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based strategy outperforms other agents that have been constructed via approaches such as

counterfactual regret minimisation and Monte-Carlo simulation. Here, Sartre3P convincingly

wins the bankroll competition, achieving a greater bankroll than all other competitors by a large

margin. While not directly measured, we believe strategy switching has a large part to play in

this win rate.

6.6. Concluding Remarks

Overall, these results suggest that the inter-domain mapping we have defined is appropriate

and can improve performance by making use of strategies that have previously been learned

in a separate poker domain. Moreover, the result presented in this chapter demonstrate that

augmented case-based strategies actually have the capability to defeat their bottom-up coun-

terparts. In particular, Sartre3P was trained on hand history data containing the decisions of

the Hyperborean.tbr agent from the 2010 three-player, limit competition, yet the results from

the 2011 competition show that, for this particular pool of opponents, the strategy used by

Sartre3P, together with strategy switching, was able to outperform the 2011 version of Hyper-

borean.tbr. While the differences between the 2010 and the 2011 versions of Hyperborean.tbr

are not known, it is reasonable to expect that the quality of the 2011 version of Hyperborean.tbr

is more likely to have improved (rather than degraded) over the year.



Chapter 7

Conclusions and Future Work

7.1. Conclusions

The focus of this thesis was on the construction, empirical evaluation and analysis of strategies

that employ the case-based reasoning methodology in the domain of computer poker. This do-

main was chosen as a testbed for case-based strategies as it is a large, complex environment

that exhibits many real-world characteristics such as the requirement to handle imperfect in-

formation and chance events, the ability to deal with one or more competing adversaries, as

well as a necessity to handle deception. These types of domain characteristics pose challenging

issues, which are not typically addressed by many case-based reasoning systems.

Within this challenging domain, we constructed top-down, case-based strategies that were

trained on hand history logs recorded from previous poker matches. The resulting agents were

able to play at a world-class level and were shown, in some cases, to outperform alternative

state-of-the-art approaches in computer poker,such as counterfactual regret minimisation, Monte-

Carlo simulation, imperfect information game tree search and rule-based systems.

In this thesis, we have focused on three poker domains:

1. Heads-Up, Limit Texas Hold’em

2. Heads-Up, No-Limit Texas Hold’em, and

3. Multi-player, Limit Texas Hold’em

We presented frameworks for the construction of case-based strategies in these three sub-

domains. The frameworks were the result of a period of iterative maintenance and improve-

ment. During this period of maintenance, issues were addressed to do with case representa-

tion, similarity assessment and overall system architecture. Where possible, empirical evalua-

tions were conducted to confirm the efficacy of the decisions made. Changes introduced into
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the architecture were empirically evaluated and modifications that resulted in a positive ef-

fect on performance were incorporated into the final framework. A performance trajectory of

the strategies produced using this approach was presented by evaluating our case-based agent,

Sartre, against some of the best computer poker agents in the world between 2009 to 2012 at

the Annual Computer Poker Competition. Overall, the results presented indicate that the use

of the case-based reasoning methodology within computer poker’s imperfect information en-

vironment is reasonable. Our results provide support that CBR principles and techniques can

be employed to handle complex domain characteristics. The same issues and challenges that

we encountered and solved would need to be dealt with in order to apply CBR to related do-

mains, such as trade markets, combat environments, politics or any environment that involves

complex negotiations between multiple competing parties.

The frameworks introduced in this thesis used expert imitation to produce top-down, case-

based strategies. Employing this basic framework produced strong, sophisticated agents that

were able to perform well against both computerised opponents and human players. A reason-

able criticism of top-down, case-based strategies constructed via expert imitation is that the

agents produced will only be as good as the original expert used to train the system. Further-

more, the strategies produced and evaluated, by the basic frameworks, were all static strategies

that never varied their play. These strategies performed no opponent modelling, whereby in-

formation about an opponent is collected and used to affect decision making. To overcome the

above limitations, we introduced the concept of an augmentation procedure, where the basic

framework was extended in various ways to allow further functionality and to improve overall

performance.

The first augmentation procedure used implicit opponent modelling. This involved choos-

ing an appropriate strategy to use against an opponent, by selecting from a set of static strate-

gies at runtime. Multiple static strategies were constructed using our basic framework. This

resulted in multiple case-bases, each of which were trained on separate sets of data and imi-

tated a different expert’s style of play. Static strategies were selected based upon how well they

performed against the opponent. An adapted UCB1 allocation policy was employed to handle

the exploration/exploitation tradeoff. Using this augmentation procedure, no direct modelling

of the opponent took place, i.e. it was not necessary to decipher the details of an opponent’s

strategy. Instead, opponent modelling took place implicitly by recording the profit or loss asso-

ciated with each case-base. By employing this augmentation procedure, dynamic strategies

that change over time were produced, as opposed to the non-waiving, static strategies that

result from the basic framework. We presented results in the domains of heads-up limit and

heads-up no-limit Texas Hold’em. Overall, improvements were witnessed in the limit domain,

but results were mixed in the more complicated no-limit domain.
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The strategies produced by our first augmentation procedure were not exploitive strategies,

as they did not recognise opponent weaknesses and capitilise on those weaknesses. The sec-

ond augmentation procedure produced both dynamic and exploitive strategies. Our second

augmentation procedure extended the basic framework to allow explicit opponent modelling

to take place. Details of an opponent’s strategy were captured and used to dynamically alter the

decisions made by our own case-based strategies. Instead of constructing fully-fledged models

of individual opponents, which can take a considerable amount of time, our augmentation pro-

cedure classified opponent types using a feature vector representation based on bet frequency

information. Using this approach, we were able to quickly assess the similarity of the current

opponent to opponents that had previously been encountered. Adaptation strategies which

had been successful against previous similar opponents, were reused against the current op-

ponent to directly alter the probability distribution of playing actions. We evaluated a range of

adaptation strategies against a set of both previously encountered and completely novel oppo-

nents. In both cases, the results produced showed improvement in performance compared to

the basic framework that used no opponent modelling.

Overall, extending the basic framework with either implicit or explicit opponent modelling

tended to result in improvements in performance, compared to simply employing top-down,

case-based strategies produced by the basic framework. Our third and final augmentation pro-

cedure performed no opponent modelling, but instead used transfer learning in order to lever-

age information contained in case-bases from separate poker domains. We introduced a player

mapping that allowed similarity to be determined between cases from separate domains. We

showed that by specifying a reasonable inter-domain mapping, it was possible to perform strat-

egy switching, whereby cases recorded in one domain were able to be applied in a separate do-

main. We evaluated this augmentation procedure by leveraging cases from the two-player, limit

domain within the multi-player, limit domain. As the two-player domain case-base contained

a larger set of more fine-grained cases, this allowed better decisions to be made when relevant

heads-up scenarios were encountered in the multi-player environment. This resulted in large

improvements in performance as witnessed via a comparative evaluation between switching

and non-switching strategies.

In conclusion, the limitations of top-down, case-based strategies have been overcome by ex-

tending the basic frameworks with augmentation procedures. The augmentation procedures

described in this thesis gather supplementary information, which they make use of to produce

both dynamic and exploitive case-based strategies. By introducing augmentation procedures,

we have addressed the criticism of expert imitation that restricts the performance of the strate-

gies produced to the level of the original expert used to train the system. We have presented

evidence that it is possible to overcome this limitation. In particular, consider the results of the
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2011 AAAI computer poker competition, where our agent (Sartre3P) won the bankroll division

of the multi-player, limit Texas Hold’em competition. Here, Sartre3P constructed its case-base

by imitating the decisions of the best agent from the previous year’s competition, i.e. Hyper-

borean. By augmenting the static strategy produced, with strategy switching, Sartre3P was able

to outperform all competitors in the 2011 competition, by a large margin, including the latest

version of Hyperborean.

Throughout this thesis, the emphasis has been on the performance of the case-based strate-

gies produced, with the goal of constructing strong strategies that are able to play at an ad-

vanced level of skill. The results presented provide strong support for the efficacy of case-based

strategies that have been trained on hand history data and results from the annual computer

poker competition confirm that our case-based strategies do reach a level of sophisticated play.

This focus on performance has inevitably resulted in some specific tailoring of the frameworks

to the computer poker domain. However, the architecture of the augmentation procedures we

have introduced are all reusable and are able to be applied in other gaming environments, as

well as real-world domains that involve imperfect information and competing adversaries.

7.2. Future Work

We have identified several possible areas of future work. The first area of future work involves

the construction and evaluation of case-based strategies in more complex poker sub-domains.

The contents of this thesis focused entirely on the domains of heads-up, limit; heads-up, no-

limit; and three-player limit Texas Hold’em. These domains were selected as they have been of-

fered as competitions at the annual computer poker competition since 2009. The next obvious

poker sub-domain to explore would be three-player, no-limit Texas Hold’em. The combination

of both multiple opponents and a no-limit betting structure makes this a challenging domain

for computerised poker agents.

In addition to multi-player, no-limit Texas Hold’em, an emphasis on tournament play should

also be considered. In a tournament, players are continually eliminated and play proceeds until

only one player holds all the chips. Players are required to deal with fluctuating chip stacks and

increasing blind levels. This is the type of play used to determine a world champion at the an-

nual World Series of Poker. All domains considered in this thesis were cash game environments,

where infinite bankrolls and fixed blind levels (i.e. where blind values do not increase over time)

were assumed. Fixing these domain characteristics limits the stochasticity of the environment

and allows a more accurate assessment of a strategy’s quality. While varying blind and chip

stack levels introduce further complexity and noise into the environment, if the goal of com-
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puter poker researchers is to construct world champion-level poker agents, then tournament

play needs to be taken into account.

As increasingly more complex domains are considered, a related area of future work has to

do with the applicability of transfer learning between those domains. In our current work, we

evaluated transfer learning between heads-up limit and the three-player limit domain. Fur-

ther investigation would be required to determine if leveraging cases between domains still

holds, as the gap between the number of players associated with those domains widens. Fur-

thermore, transfer learning between no-limit domains would be worthy of investigation, where

more complex betting sequences pose an added difficulty in assessing similarity between sub-

domains.

Finally, the work presented in this thesis largely focused on bot vs. bot play for evaluation.

While some results against human competitors were presented, as recorded from our browser-

based web application, a more rigorous evaluation against human opposition would further

validate the efficacy of our approach. A related area of possible future work would involve more

of a focus on constructing case-based agents that have been trained with real-world decisions

made by expert human poker players. Most of the strategies evaluated in this thesis were con-

structed with artificial data from the annual computer poker competition. ACPC data was used

to train our strategies due to its quality and availability. Cased-based strategies trained on real-

world data-sets from human play, would require further efforts (e.g. applying DIVAT analysis)

to ensure that the quality of the decisions used for training were reasonable.
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Appendix A

Annual Computer Poker

Competition Cross-Tables

Below are selected crosstables of matches from the Annual Computer Poker Competition for

the years 2009 – 2012. Results are from the perspective of the row player. Values are in milli big

blinds per hand with a 95% confidence interval. Some agent names may have been shortened

due to space considerations.

159



160 JONATHAN RUBIN

d
cu

rb
h

u
A

o
B

o
t

G
G

Va
lu

ta
G

S5
G

S5
D

yn
am

ic
H

yp
er

b
o

re
an

-B
R

d
cu

rb
h

u
–

−
6
6

±
9

−
2
0
8

±
3

−
2
4
1

±
4

−
1
1
7

±
4

−
2
3
0

±
4

A
o

B
o

t
6
6

±
9

–
−

1
3
2

±
4

−
1
1
0

±
4

9
3

±
4

−
1
3
8

±
3

G
G

Va
lu

ta
2
0
8

±
3

1
3
2

±
4

–
5
1

±
3

1
6
2

±
4

2
1

±
3

G
S5

2
4
1

±
4

1
1
0

±
4

−
5
1

±
3

–
1
4
5

±
4

−
4
4

±
4

G
S5

D
yn

am
ic

1
1
7

±
4

−
9
3

±
4

−
1
6
2

±
4

−
1
4
5

±
4

–
−

1
7
7

±
4

H
yp

er
b

o
re

an
-B

R
2
3
0

±
4

1
3
8

±
3

−
2
1

±
3

4
4

±
4

1
7
7

±
4

–

H
yp

er
b

o
re

an
-E

q
m

2
0
8

±
4

1
4
3

±
4

−
1
2

±
2

4
6

±
3

1
5
1

±
4

2
5

±
2

L
ID

IA
1
4
5

±
3

−
7
3

±
5

−
1
8
2

±
4

−
1
7
7

±
4

4
2

±
5

−
2
3
9

±
5

R
o

ck
h

o
p

p
er

2
1
7

±
4

1
3
4

±
4

−
1
4

±
2

4
3

±
3

1
4
9

±
4

8
±

2

Sl
u

m
b

o
t

2
1
8

±
3

1
0
0

±
4

−
4
2

±
3

1
6

±
4

1
3
0

±
5

−
2
4

±
4

to
m

m
yb

o
t

−
1
0
0
6

±
5

−
8
5
6

±
7

−
4
4
0

±
6

−
5
5
2

±
8

1
1
9
0

±
9

−
5
9
8

±
6

M
A

N
Z

A
N

A
2
6
9

±
3

2
2
5

±
1
0

−
7

±
2

4
7

±
3

1
7
3

±
4

1
9

±
2

Sa
rt

re
2
1
7

±
3

1
3
1

±
6

−
4
6

±
3

−
8

±
3

1
1
9

±
4

−
2
4

±
3

H
yp

er
b

o
re

an
-E

q
m

L
ID

IA
R

o
ck

h
o

p
p

er
Sl

u
m

b
o

t
to

m
m

yb
o

t
M

A
N

Z
A

N
A

Sa
rt

re

d
cu

rb
h

u
−

2
0
8

±
4

−
1
4
5

±
3

−
2
1
7

±
4

−
2
1
8

±
3

1
0
0
6

±
5

−
2
6
9

±
3

−
2
1
7

±
3

A
o

B
o

t
−

1
4
3

±
4

7
3

±
5

−
1
3
4

±
4

−
1
0
0

±
4

8
5
6

±
7

−
2
2
5

±
1
0

−
1
3
1

±
6

G
G

Va
lu

ta
1
2

±
2

1
8
2

±
4

1
4

±
2

4
2

±
3

4
4
0

±
6

7
±

2
4
6

±
3

G
S5

−
4
6

±
3

1
7
7

±
4

−
4
3

±
3

−
1
6

±
4

5
5
2

±
8

−
4
7

±
3

8
±

3

G
S5

D
yn

am
ic

−
1
5
1

±
4

−
4
2

±
5

−
1
4
9

±
4

−
1
3
0

±
5

−
1
1
9
0

±
9

−
1
7
3

±
4

−
1
1
9

±
4

H
yp

er
b

o
re

an
-B

R
−

2
5

±
2

2
3
9

±
5

−
8

±
2

2
4

±
4

5
9
8

±
6

−
1
9

±
2

2
4

±
3

H
yp

er
b

o
re

an
-E

q
m

–
1
9
4

±
4

8
±

2
2
7

±
3

4
5
5

±
7

7
±

2
5
1

±
3

L
ID

IA
−

1
9
4

±
4

–
−

1
6
9

±
4

−
1
7
1

±
4

5
6
5

±
9

−
2
4
3

±
4

−
1
4
5

±
4

R
o

ck
h

o
p

p
er

−
8

±
2

1
6
9

±
4

–
2
7

±
3

4
8
7

±
6

−
3

±
2

3
3

±
3

Sl
u

m
b

o
t

−
2
7

±
3

1
7
1

±
4

−
2
7

±
3

–
6
5
6

±
7

−
2
9

±
3

1
2

±
3

to
m

m
yb

o
t

−
4
5
5

±
7

−
5
6
5

±
9

−
4
8
7

±
6

−
6
5
6

±
7

–
−

1
2
0
5

±
5

−
7
6
5

±
7

M
A

N
Z

A
N

A
−

7
±

2
2
4
3

±
4

3
±

2
2
9

±
3

1
2
0
5

±
5

–
3
8

±
2

Sa
rt

re
−

5
1

±
3

1
4
5

±
4

−
3
3

±
3

−
1
2

±
3

7
6
5

±
7

−
3
8

±
2

–

20
09

H
ea

d
s-

u
p

L
im

it
Te

xa
s

H
o

ld
’e

m



CASE-BASED STRATEGIES IN COMPUTER POKER 161

A
rn

o
ld

2
A

SV
P

G
G

Va
lu

ta
G

S6
.i

ro
G

S6
.t

b
r

H
yp

er
b

o
re

an
.i

ro
H

yp
er

b
o

re
an

.t
b

r

A
rn

o
ld

2
–

4
7
5

±
8

−
3
2

±
5

−
1
2

±
6

−
1
2

±
6

−
3
2

±
5

−
3
6

±
5

A
SV

P
−

4
7
5

±
8

–
−

4
6
1

±
9

−
6
8
9

±
8

−
4
1

±
1
8

−
5
7
4

±
9

−
5
9
3

±
8

G
G

Va
lu

ta
3
2

±
5

4
6
1

±
9

–
3
1

±
6

3
1

±
6

3
±

6
−

3
±

5

G
S6

.i
ro

1
2

±
6

6
8
9

±
8

−
3
1

±
6

–
–

−
3
1

±
5

−
4
0

±
6

G
S6

.t
b

r
1
2

±
6

4
1

±
1
8

−
3
1

±
6

–
–

–
−

4
1

±
6

H
yp

er
b

o
re

an
.i

ro
3
2

±
5

5
7
4

±
9

−
3

±
6

3
1

±
5

–
–

−
3

±
4

H
yp

er
b

o
re

an
.t

b
r

3
6

±
5

5
9
3

±
8

3
±

5
4
0

±
6

4
1

±
6

3
±

4
–

Je
st

er
−

2
5

±
6

7
2
2

±
9

−
4
7

±
5

−
3
5

±
4

−
3
3

±
6

−
4
9

±
6

−
5
4

±
5

L
it

tl
eR

o
ck

−
3
8

±
5

4
2
0

±
9

−
7
7

±
5

−
4
7

±
4

−
5
2

±
8

−
7
0

±
5

−
6
9

±
5

lo
n

gh
o

rn
−

1
3
9
6

±
1
2

−
1
8
3
6

±
1
0

−
1
4
3
7

±
1
3

−
1
4
3
8

±
1
3

−
1
5
1
4

±
1
1

−
1
4
2
7

±
1
3

−
1
4
2
1

±
1
3

P
L

IC
A

S
−

1
9
1

±
6

4
1
9

±
1
7

−
2
1
9

±
7

−
1
9
7

±
6

−
1
9
6

±
7

−
2
3
1

±
6

−
2
3
4

±
7

P
U

L
P

O
3
9

±
5

7
2
4

±
8

−
1

±
5

3
2

±
6

3
3

±
6

−
2

±
4

−
9

±
4

R
o

ck
h

o
p

p
er

3
6

±
5

4
9
2

±
8

6
±

5
3
7

±
6

3
8

±
6

3
±

4
1

±
4

Sa
rt

re
1
5

±
5

7
6
2

±
8

−
1
8

±
5

3
±

5
5

±
5

−
1
5

±
5

−
2
3

±
5

Sl
u

m
b

o
t

3
4

±
6

5
6
2

±
9

−
4

±
5

3
4

±
6

3
4

±
6

−
1

±
4

−
5

±
4

Je
st

er
L

it
tl

eR
o

ck
lo

n
gh

o
rn

P
L

IC
A

S
P

U
L

P
O

R
o

ck
h

o
p

p
er

Sa
rt

re
Sl

u
m

b
o

t

A
rn

o
ld

2
2
5

±
6

3
8

±
5

1
3
9
6

±
1
2

1
9
1

±
6

−
3
9

±
5

−
3
6

±
5

−
1
5

±
5

−
3
4

±
6

A
SV

P
−

7
2
2

±
9

−
4
2
0

±
9

1
8
3
6

±
1
0

−
4
1
9

±
1
7

−
7
2
4

±
8

−
4
9
2

±
8

−
7
6
2

±
8

−
5
6
2

±
9

G
G

Va
lu

ta
4
7

±
5

7
7

±
5

1
4
3
7

±
1
3

2
1
9

±
7

1
±

5
−

6
±

5
1
8

±
5

4
±

5

G
S6

.i
ro

3
5

±
4

4
7

±
4

1
4
3
8

±
1
3

1
9
7

±
6

−
3
2

±
6

−
3
7

±
6

−
3

±
5

−
3
4

±
6

G
S6

.t
b

r
3
3

±
6

5
2

±
8

1
5
1
4

±
1
1

1
9
6

±
7

−
3
3

±
6

−
3
8

±
6

−
5

±
5

−
3
4

±
6

H
yp

er
b

o
re

an
.i

ro
4
9

±
6

7
0

±
5

1
4
2
7

±
1
3

2
3
1

±
6

2
±

4
−

3
±

4
1
5

±
5

1
±

4

H
yp

er
b

o
re

an
.t

b
r

5
4

±
5

6
9

±
5

1
4
2
1

±
1
3

2
3
4

±
7

9
±

4
−

1
±

4
2
3

±
5

5
±

4

Je
st

er
–

−
5

±
5

1
3
9
9

±
1
3

1
8
4

±
7

−
5
2

±
5

−
5
2

±
5

−
2
7

±
5

−
4
5

±
5

L
it

tl
eR

o
ck

5
±

5
–

1
4
7
5

±
1
1

9
1

±
6

−
1
2
5

±
5

−
7
7

±
5

−
7
2

±
5

−
6
9

±
6

lo
n

gh
o

rn
−

1
3
9
9

±
1
3

−
1
4
7
5

±
1
1

–
−

1
0
3
8

±
1
6

−
1
4
7
8

±
1
6

−
1
4
3
7

±
1
2

−
1
4
4
5

±
1
3

−
1
4
1
6

±
1
2

P
L

IC
A

S
−

1
8
4

±
7

−
9
1

±
6

1
0
3
8

±
1
6

–
−

2
4
2

±
6

−
2
2
1

±
6

−
2
1
8

±
7

−
2
1
9

±
7

P
U

L
P

O
5
2

±
5

1
2
5

±
5

1
4
7
8

±
1
6

2
4
2

±
6

–
−

7
±

5
2
7

±
4

−
3

±
5

R
o

ck
h

o
p

p
er

5
2

±
5

7
7

±
5

1
4
3
7

±
1
2

2
2
1

±
6

7
±

5
–

2
6

±
5

5
±

5

Sa
rt

re
2
7

±
5

7
2

±
5

1
4
4
5

±
1
3

2
1
8

±
7

−
2
7

±
4

−
2
6

±
5

–
−

2
1

±
5

Sl
u

m
b

o
t

4
5

±
5

6
9

±
6

1
4
1
6

±
1
2

2
1
9

±
7

3
±

5
−

5
±

5
2
1

±
5

–

20
10

H
ea

d
s-

u
p

L
im

it
Te

xa
s

H
o

ld
’e

m



162 JONATHAN RUBIN

c4
tw

.i
ro

c4
tw

.t
b

r
H

yp
er

b
o

re
an

.i
ro

H
yp

er
b

o
re

an
.t

b
r

P
o

ke
rB

o
tS

LO
Sa

rt
re

N
L

Ta
rt

an
ia

n
4.

ir
o

Ta
rt

an
ia

n
4.

tb
r

c4
tw

.i
ro

–
–

−
4
1
8
1

±
1
6
1

–
−

7
5
5
7

±
7
3
9

−
2
2
8
9

±
1
1
0

−
5
5
3
4

±
1
0
9

–

c4
tw

.t
b

r
–

–
–

−
3
5
6
2

±
9
7

−
6
9
7
7

±
7
2
9

−
2
2
4
1

±
1
2
4

–
−

8
6
6
9

±
1
6
8

H
yp

er
b

o
re

an
.i

ro
4
1
8
1

±
1
6
1

–
–

−
8
3

±
4
3

7
7
5

±
4
7

2
0
0

±
3
9

2
4
8

±
4
9

1
2
2

±
3
8

H
yp

er
b

o
re

an
.t

b
r

–
3
5
6
2

±
9
7

8
3

±
4
3

–
7
9
5

±
4
5

2
7
2

±
3
5

3
6
4

±
4
2

2
2
0

±
3
9

P
o

ke
rB

o
tS

LO
7
5
5
7

±
7
3
9

6
9
7
7

±
7
2
9

−
7
7
5

±
4
7

−
7
9
5

±
4
5

–
−

1
9
3

±
3
9

−
1
0
8

±
4
6

−
1
5
9

±
4
0

Sa
rt

re
N

L
2
2
8
9

±
1
1
0

2
2
4
1

±
1
2
4

−
2
0
0

±
3
9

−
2
7
2

±
3
5

1
9
3

±
3
9

–
4
2

±
3
8

−
1
3

±
3
3

Ta
rt

an
ia

n
4.

ir
o

5
5
3
4

±
1
0
9

–
−

2
4
8

±
4
9

−
3
6
4

±
4
2

1
0
8

±
4
6

−
4
2

±
3
8

–
−

8
0

±
2
3

Ta
rt

an
ia

n
4.

tb
r

–
8
6
6
9

±
1
6
8

−
1
2
2

±
3
8

−
2
2
0

±
3
9

1
5
9

±
4
0

1
3

±
3
3

8
0

±
2
3

–

20
10

H
ea

d
s-

U
p

N
o

-L
im

it
Te

xa
s

H
o

ld
’e

m



CASE-BASED STRATEGIES IN COMPUTER POKER 163

2B
o

t
A

A
IM

o
n

ty
b

o
t

C
al

am
ar

i
C

al
vi

n
E

n
tr

o
p

y
Fe

st
e

G
B

R
G

G
Va

lu
ta

H
yp

er
-i

ro
H

yp
er

-t
b

r

2B
o

t
–

2
3
5

±
1
8

−
7
5

±
8

5
1
3

±
1
1

2
8
0

±
1
4

−
0

±
8

2
6
9

±
1
6

−
1
3

±
9

−
7
3

±
8

−
6
5

±
9

A
A

IM
o

n
ty

b
o

t
−

2
3
5

±
1
8

–
−

3
2
5

±
1
9

7
0

±
1
5

5
3
8

±
1
8

−
2
7
0

±
1
7

2
7

±
1
3

−
2
1
9

±
1
8

−
2
8
8

±
3
3

−
2
6
6

±
1
8

C
al

am
ar

i
7
5

±
8

3
2
5

±
1
9

–
5
3
1

±
1
1

4
5
4

±
1
1

5
3

±
7

4
2
9

±
2
2

4
1

±
5

−
1
1

±
7

−
8

±
7

C
al

vi
n

−
5
1
3

±
1
1

−
7
0

±
1
5

−
5
3
1

±
1
1

–
5
3

±
1
8

−
4
9
5

±
1
2

2
4

±
1
2

−
4
5
5

±
9

−
5
0
2

±
1
2

−
5
2
2

±
1
2

E
n

tr
o

p
y

−
2
8
0

±
1
4

−
5
3
8

±
1
8

−
4
5
4

±
1
1

−
5
3

±
1
8

–
−

3
4
4

±
1
4

−
6

±
1
8

−
1
0
5

±
1
3

−
2
5
9

±
1
3

−
2
3
7

±
1
2

Fe
st

e
0

±
8

2
7
0

±
1
7

−
5
3

±
7

4
9
5

±
1
2

3
4
4

±
1
4

–
3
4
7

±
2
1

−
3

±
8

−
5
1

±
8

−
6
0

±
9

G
B

R
−

2
6
9

±
1
6

−
2
7

±
1
3

−
4
2
9

±
2
2

−
2
4

±
1
2

6
±

1
8

−
3
4
7

±
2
1

–
−

2
0
2

±
1
4

−
3
2
7

±
3
6

−
3
0
9

±
1
8

G
G

Va
lu

ta
1
3

±
9

2
1
9

±
1
8

−
4
1

±
5

4
5
5

±
9

1
0
5

±
1
3

3
±

8
2
0
2

±
1
4

–
−

4
2

±
8

−
3
3

±
7

H
yp

er
-i

ro
7
3

±
8

2
8
8

±
3
3

1
1

±
7

5
0
2

±
1
2

2
5
9

±
1
3

5
1

±
8

3
2
7

±
3
6

4
2

±
8

–
–

H
yp

er
-t

b
r

6
5

±
9

2
6
6

±
1
8

8
±

7
5
2
2

±
1
2

2
3
7

±
1
2

6
0

±
9

3
0
9

±
1
8

3
3

±
7

–
–

L
it

tl
eR

o
ck

3
8

±
8

2
3
6

±
1
6

−
1
6

±
7

4
9
4

±
1
0

1
3
1

±
1
3

3
0

±
8

2
7
8

±
1
7

7
±

8
−

2
7

±
8

−
3
5

±
9

P
at

ie
n

ce
−

8
±

9
2
6
2

±
2
2

−
6
5

±
8

5
0
0

±
1
1

2
6
8

±
1
6

0
±

9
3
5
9

±
1
9

−
5

±
9

−
6
2

±
9

−
7
2

±
8

p
la

ye
r.

ze
ta

−
4
2
7

±
1
4

−
2
0
1

±
4
3

−
5
8
5

±
1
4

1
6
4

±
2
1

6
3

±
4
9

−
5
1
5

±
1
6

−
3
5
3

±
7
3

−
3
5
0

±
1
5

−
4
7
6

±
1
4

−
4
5
0

±
1
6

P
O

M
P

E
IA

−
5
2
5

±
6

−
5
1
4

±
1
0

−
6
1
3

±
9

−
5
6
5

±
9

−
6
8
6

±
9

−
5
6
5

±
7

−
6
0
4

±
8

−
4
6
7

±
7

−
5
2
6

±
8

−
5
2
8

±
7

R
o

b
o

tB
o

t
−

2
7
1

±
1
2

1
7
7

±
1
5

−
2
7
6

±
1
1

3
2
8

±
1
1

−
3
5

±
1
7

−
2
4
8

±
1
0

2
2
8

±
1
4

−
2
4
0

±
1
0

−
2
9
2

±
1
0

−
3
0
6

±
1
0

Sa
rt

re
5
7

±
8

3
2
7

±
1
7

−
1
8

±
5

5
0
7

±
1
0

4
7
0

±
1
2

3
7

±
7

4
1
7

±
2
0

3
6

±
7

−
1
9

±
6

−
2
4

±
8

Sl
u

m
b

o
t

6
3

±
1
0

2
5
9

±
1
7

7
±

6
4
9
0

±
1
2

2
4
0

±
1
4

4
7

±
8

3
0
9

±
1
5

3
9

±
6

−
6

±
7

3
±

8

Te
ll

B
o

t
−

7
0
3

±
1
7

−
1
0
2
8

±
2
6

−
8
9
9

±
1
5

−
7
3
4

±
2
3

−
1
0
9
1

±
3
3

−
8
5
3

±
1
9

−
1
3
5
9

±
2
9

−
3
6
7

±
1
7

−
5
8
0

±
1
5

−
5
4
1

±
2
1

T
il

tn
et

−
5
7
3

±
1
1

−
4
4
6

±
2
6

−
7
1
6

±
1
1

3
6

±
1
7

5
6

±
2
1

−
6
3
3

±
1
3

−
2
6
6

±
2
4

−
3
4
4

±
1
2

–
−

5
0
0

±
1
6

T
il

tA
d

ap
t

−
5
7
1

±
1
3

−
3
8
6

±
1
1

−
6
6
8

±
1
2

2
1
3

±
2
1

−
1
5
6

±
2
4

−
6
1
8

±
1
2

−
2
0
0

±
6
3

−
3
5
7

±
1
3

−
5
1
1

±
1
5

–

Z
B

o
t

4
7

±
9

2
4
9

±
1
8

−
3
1

±
7

4
7
3

±
1
1

2
7
4

±
1
3

5
4

±
8

3
0
9

±
1
1

1
7

±
9

−
3
3

±
8

−
3
5

±
9

L
it

tl
eR

o
ck

P
at

ie
n

ce
p

la
ye

r.
ze

ta
P

O
M

P
E

IA
R

o
b

o
tB

o
t

Sa
rt

re
Sl

u
m

b
o

t
Te

ll
B

o
t

T
il

tn
et

T
il

tA
d

ap
t

Z
B

o
t

2B
o

t
−

3
8

±
8

8
±

9
4
2
7

±
1
4

5
2
5

±
6

2
7
1

±
1
2

−
5
7

±
8

−
6
3

±
1
0

7
0
3

±
1
7

5
7
3

±
1
1

5
7
1

±
1
3

−
4
7

±
9

A
A

IM
o

n
ty

b
o

t
−

2
3
6

±
1
6

−
2
6
2

±
2
2

2
0
1

±
4
3

5
1
4

±
1
0

−
1
7
7

±
1
5

−
3
2
7

±
1
7

−
2
5
9

±
1
7

1
0
2
8

±
2
6

4
4
6

±
2
6

3
8
6

±
1
1

−
2
4
9

±
1
8

C
al

am
ar

i
1
6

±
7

6
5

±
8

5
8
5

±
1
4

6
1
3

±
9

2
7
6

±
1
1

1
8

±
5

−
7

±
6

8
9
9

±
1
5

7
1
6

±
1
1

6
6
8

±
1
2

3
1

±
7

C
al

vi
n

−
4
9
4

±
1
0

−
5
0
0

±
1
1

−
1
6
4

±
2
1

5
6
5

±
9

−
3
2
8

±
1
1

−
5
0
7

±
1
0

−
4
9
0

±
1
2

7
3
4

±
2
3

−
3
6

±
1
7

−
2
1
3

±
2
1

−
4
7
3

±
1
1

E
n

tr
o

p
y

−
1
3
1

±
1
3

−
2
6
8

±
1
6

−
6
3

±
4
9

6
8
6

±
9

3
5

±
1
7

−
4
7
0

±
1
2

−
2
4
0

±
1
4

1
0
9
1

±
3
3

−
5
6

±
2
1

1
5
6

±
2
4

−
2
7
4

±
1
3

Fe
st

e
−

3
0

±
8

−
0

±
9

5
1
5

±
1
6

5
6
5

±
7

2
4
8

±
1
0

−
3
7

±
7

−
4
7

±
8

8
5
3

±
1
9

6
3
3

±
1
3

6
1
8

±
1
2

−
5
4

±
8

G
B

R
−

2
7
8

±
1
7

−
3
5
9

±
1
9

3
5
3

±
7
3

6
0
4

±
8

−
2
2
8

±
1
4

−
4
1
7

±
2
0

−
3
0
9

±
1
5

1
3
5
9

±
2
9

2
6
6

±
2
4

2
0
0

±
6
3

−
3
0
9

±
1
1

G
G

Va
lu

ta
−

7
±

8
5

±
9

3
5
0

±
1
5

4
6
7

±
7

2
4
0

±
1
0

−
3
6

±
7

−
3
9

±
6

3
6
7

±
1
7

3
4
4

±
1
2

3
5
7

±
1
3

−
1
7

±
9

H
yp

er
-i

ro
2
7

±
8

6
2

±
9

4
7
6

±
1
4

5
2
6

±
8

2
9
2

±
1
0

1
9

±
6

6
±

7
5
8
0

±
1
5

–
5
1
1

±
1
5

3
3

±
8

H
yp

er
-t

b
r

3
5

±
9

7
2

±
8

4
5
0

±
1
6

5
2
8

±
7

3
0
6

±
1
0

2
4

±
8

−
3

±
8

5
4
1

±
2
1

5
0
0

±
1
6

–
3
5

±
9

L
it

tl
eR

o
ck

–
4
5

±
1
0

3
8
8

±
1
2

5
2
0

±
8

2
8
8

±
9

6
±

6
−

2
7

±
7

3
8
3

±
1
7

4
6
6

±
1
2

4
5
2

±
1
4

−
9

±
8

P
at

ie
n

ce
−

4
5

±
1
0

–
4
7
8

±
1
4

5
7
6

±
7

2
6
0

±
1
0

−
4
8

±
9

−
6
6

±
1
0

7
9
0

±
1
7

6
0
5

±
1
2

5
8
9

±
1
4

−
5
7

±
8

p
la

ye
r.

ze
ta

−
3
8
8

±
1
2

−
4
7
8

±
1
4

–
7
2
2

±
9

1
3
7

±
2
4

−
6
1
7

±
1
6

−
4
4
8

±
1
6

7
6
4

±
4
6

2
2
4

±
1
7

3
8
3

±
2
2

−
3
9
6

±
1
3

P
O

M
P

E
IA

−
5
2
0

±
8

−
5
7
6

±
7

−
7
2
2

±
9

–
−

8
1
5

±
5

−
6
4
7

±
9

−
5
3
0

±
8

3
5

±
1
0

−
5
0
9

±
6

−
3
5
3

±
8

−
5
3
2

±
8

R
o

b
o

tB
o

t
−

2
8
8

±
9

−
2
6
0

±
1
0

−
1
3
7

±
2
4

8
1
5

±
5

–
−

2
1
3

±
1
1

−
2
9
6

±
1
1

3
4
9

±
2
1

3
6
4

±
1
8

2
0
7

±
1
9

−
2
9
9

±
1
1

Sa
rt

re
−

6
±

6
4
8

±
9

6
1
7

±
1
6

6
4
7

±
9

2
1
3

±
1
1

–
−

1
6

±
7

9
7
9

±
1
4

7
4
8

±
1
2

7
2
2

±
1
2

1
6

±
7

Sl
u

m
b

o
t

2
7

±
7

6
6

±
1
0

4
4
8

±
1
6

5
3
0

±
8

2
9
6

±
1
1

1
6

±
7

–
5
2
0

±
1
8

4
9
3

±
1
1

4
9
3

±
1
3

2
5

±
8

Te
ll

B
o

t
−

3
8
3

±
1
7

−
7
9
0

±
1
7

−
7
6
4

±
4
6

−
3
5

±
1
0

−
3
4
9

±
2
1

−
9
7
9

±
1
4

−
5
2
0

±
1
8

–
−

1
5
1
5

±
2
1

−
8
7
9

±
2
8

−
5
7
9

±
1
7

T
il

tn
et

−
4
6
6

±
1
2

−
6
0
5

±
1
2

−
2
2
4

±
1
7

5
0
9

±
6

−
3
6
4

±
1
8

−
7
4
8

±
1
2

−
4
9
3

±
1
1

1
5
1
5

±
2
1

–
–

−
5
4
3

±
1
3

T
il

tA
d

ap
t

−
4
5
2

±
1
4

−
5
8
9

±
1
4

−
3
8
3

±
2
2

3
5
3

±
8

−
2
0
7

±
1
9

−
7
2
2

±
1
2

−
4
9
3

±
1
3

8
7
9

±
2
8

–
–

−
5
4
6

±
1
3

Z
B

o
t

9
±

8
5
7

±
8

3
9
6

±
1
3

5
3
2

±
8

2
9
9

±
1
1

−
1
6

±
7

−
2
5

±
8

5
7
9

±
1
7

5
4
3

±
1
3

5
4
6

±
1
3

–

20
11

H
ea

d
s-

u
p

L
im

it
Te

xa
s

H
o

ld
’e

m



164 JONATHAN RUBIN

h
u

gh
H

yp
er

b
o

re
an

-i
ro

H
yp

er
b

o
re

an
-t

b
r

Lu
ck

y7
p

la
ye

r.
ka

p
p

a.
n

l
P

O
M

P
E

IA
R

em
b

ra
n

t
Sa

rt
re

N
L

h
u

gh
–

−
5
9
7

±
4
1

−
6
0
3

±
3
7

6
8
4

±
3
9

7
0
5

±
3
1
2

4
5
6
3

±
2
6

7
3
5

±
2
9

−
2
7
9

±
3
5

H
yp

er
b

o
re

an
-i

ro
5
9
7

±
4
1

–
–

5
3
5

±
3
6

2
7
3
5

±
1
1
0

2
1
9
4

±
4
9

5
9
9

±
3
5

1
4
5

±
3
4

H
yp

er
b

o
re

an
-t

b
r

6
0
3

±
3
7

–
–

5
7
6

±
3
9

2
7
1
5

±
1
1
0

2
1
1
2

±
4
3

6
2
0

±
3
4

1
7
3

±
2
9

Lu
ck

y7
−

6
8
4

±
3
9

−
5
3
5

±
3
6

−
5
7
6

±
3
9

–
1
3
1
8

±
2
2
5

9
8
5
2

±
1
0
8

−
8
7

±
3
9

−
4
1
9

±
3
5

p
la

ye
r.

ka
p

p
a.

n
l

−
7
0
5

±
3
1
2

−
2
7
3
5

±
1
1
0

−
2
7
1
5

±
1
1
0

−
1
3
1
8

±
2
2
5

–
1
7
8
2
4

±
2
3
1

−
1
8
2
5

±
1
1
3

−
5
1
0
5

±
2
5
4

P
O

M
P

E
IA

−
4
5
6
3

±
2
6

−
2
1
9
4

±
4
9

−
2
1
1
2

±
4
3

−
9
8
5
2

±
1
0
8

−
1
7
8
2
4

±
2
3
1

–
−

2
5
7
2

±
2
8

−
1
8
3
5

±
2
7

R
em

b
ra

n
t

−
7
3
5

±
2
9

−
5
9
9

±
3
5

−
6
2
0

±
3
4

8
7

±
3
9

1
8
2
5

±
1
1
3

2
5
7
2

±
2
8

–
−

3
4
8

±
3
9

Sa
rt

re
N

L
2
7
9

±
3
5

−
1
4
5

±
3
4

−
1
7
3

±
2
9

4
1
9

±
3
5

5
1
0
5

±
2
5
4

1
8
3
5

±
2
7

3
4
8

±
3
9

–

20
11

H
ea

d
s-

u
p

N
o

-L
im

it
Te

xa
s

H
o

ld
’e

m



CASE-BASED STRATEGIES IN COMPUTER POKER 165

A
A

IM
o

n
ty

b
o

t

B
n

o
ld

3
d

cu
b

o
t3

p
lr

E
n

tr
o

p
y

H
yp

er
b

o
re

an
-i

ro
H

yp
er

b
o

re
an

-t
b

r
L

it
tl

eR
o

ck
O

w
n

B
o

t
p

la
ye

r.
ze

ta
.3

p
Sa

rt
re

3p

A
A

IM
o

n
ty

b
o

t
–

–
–

–
–

–
–

–
–

B
n

o
ld

3
–

−
3
0

±
2
3

−
2
3
1

±
1
2
5

−
5
0

±
5
6

−
3
7

±
5
8

−
2
5

±
2
6

−
2
0

±
5
8

5
5

±
4
1

−
2
6

±
3
6

d
cu

b
o

t3
p

lr
1
4
7

±
4
3

–
1
2
9

±
5
1

2
6

±
3
4

–
7
7

±
3
9

1
1
8

±
3
2

2
8
6

±
4
7

5
1

±
3
9

E
n

tr
o

p
y

−
1
8
1

±
7
4

−
5
2
9

±
7
8

–
−

5
2
3

±
4
1

−
4
9
1

±
6
7

−
4
9
8

±
1
0
5

−
2
2
3

±
6
6

−
1
4
2

±
8
5

−
7
1
8

±
7
8

H
yp

er
b

o
re

an
-i

ro
1
4
5

±
3
7

1
3
3

±
6
2

2
1
1

±
5
1

–
–

9
9

±
3
6

1
8
3

±
5
0

4
4
1

±
3
3

1
3
3

±
4
8

H
yp

er
b

o
re

an
-t

b
r

1
2
3

±
4
5

–
1
2
9

±
4
7

–
–

1
3
0

±
4
2

1
8
1

±
6
9

3
7
0

±
5
3

1
0
2

±
2
1

L
it

tl
eR

o
ck

9
8

±
3
4

6
7

±
3
4

1
2
8

±
5
8

5
8

±
4
1

3
4

±
2
7

–
9
9

±
5
3

3
7
6

±
5
7

4
9

±
2
6

O
w

n
B

o
t

2
5

±
6
4

−
6
2

±
6
8

−
9

±
5
5

−
1
1
8

±
6
9

−
1
1
1

±
7
9

−
7
4

±
7
7

–
3
2
3

±
1
0
6

−
1
2
4

±
7
4

p
la

ye
r.

ze
ta

.3
p

−
4
0
8

±
4
0

−
6
3
1

±
6
0

−
3
5
0

±
7
8

−
6
8
4

±
4
3

−
6
7
2

±
7
8

−
6
5
5

±
5
2

−
6
5
9

±
6
0

–
−

8
4
9

±
4
5

Sa
rt

re
3p

1
5
3

±
6
7

1
6
2

±
4
1

3
9
7

±
6
9

7
6

±
3
9

1
0
8

±
4
2

1
3
7

±
3
0

1
9
1

±
6
3

5
6
7

±
5
1

–

B
n

o
ld

3

d
cu

b
o

t3
p

lr
E

n
tr

o
p

y
H

yp
er

b
o

re
an

-i
ro

H
yp

er
b

o
re

an
-t

b
r

L
it

tl
eR

o
ck

O
w

n
B

o
t

p
la

ye
r.

ze
ta

.3
p

Sa
rt

re
3p

A
A

IM
o

n
ty

b
o

t
−

1
1
8

±
3
9

4
1
2

±
6
9

−
9
4

±
7
6

−
8
6

±
7
0

−
7
3

±
3
8

−
5

±
6
5

3
5
3

±
6
2

−
1
2
7

±
9
2

B
n

o
ld

3
–

–
–

–
–

–
–

–

d
cu

b
o

t3
p

lr
–

1
0
3

±
1
6

1
0

±
9

–
4
4

±
1
0

7
9

±
1
2

2
8
3

±
1
7

1
8

±
8

E
n

tr
o

p
y

1
9
1

±
2
7

–
8
9

±
2
3

1
0
7

±
2
5

1
5
2

±
2
4

2
7
5

±
2
8

2
3
5

±
3
4

−
5
4

±
2
3

H
yp

er
b

o
re

an
-i

ro
1
0
0

±
9

2
2
8

±
1
5

–
–

1
0
3

±
9

1
8
1

±
1
3

4
5
1

±
1
7

9
1

±
1
1

H
yp

er
b

o
re

an
-t

b
r

–
1
7
3

±
1
7

–
–

8
3

±
9

1
2
4

±
1
3

3
5
6

±
1
5

8
0

±
9

L
it

tl
eR

o
ck

3
9

±
9

1
2
0

±
1
3

1
0

±
9

2
2

±
8

–
8
9

±
1
2

3
1
3

±
1
7

2
5

±
8

O
w

n
B

o
t

−
3
5

±
1
6

4
±

2
2

−
1
1
3

±
1
9

−
9
2

±
1
8

−
6
1

±
1
8

–
2
7
3

±
2
5

−
1
2
2

±
1
8

p
la

ye
r.

ze
ta

.3
p

−
3
2
0

±
2
5

−
1
1
7

±
3
7

−
4
4
4

±
2
3

−
3
9
7

±
2
5

−
3
6
4

±
2
3

−
3
1
2

±
2
7

–
−

5
2
6

±
1
9

Sa
rt

re
3p

7
6

±
1
0

3
4
4

±
1
5

3
3

±
1
1

3
4

±
9

6
7

±
8

1
6
3

±
1
2

4
8
9

±
1
6

–

d
cu

b
o

t3
p

lr

E
n

tr
o

p
y

H
yp

er
b

o
re

an
-i

ro
H

yp
er

b
o

re
an

-t
b

r
L

it
tl

eR
o

ck
O

w
n

B
o

t
p

la
ye

r.
ze

ta
.3

p
Sa

rt
re

3p

A
A

IM
o

n
ty

b
o

t
3
9
9

±
1
0
0

−
1
5
9

±
5
6

–
−

1
4
4

±
5
4

−
5
5

±
6
3

3
4
4

±
4
3

−
2
1
3

±
4
2

B
n

o
ld

3
−

2
9
4

±
1
8

−
1
1
0

±
9

–
−

8
3

±
8

−
4
4

±
1
1

3
7

±
1
9

−
9
4

±
1
0

d
cu

b
o

t3
p

lr
–

–
–

–
–

–
–

E
n

tr
o

p
y

–
−

2
2
5

±
2
2

–
−

1
8
9

±
2
2

1
1
7

±
2
5

2
5
2

±
3
2

−
3
7
8

±
2
4

H
yp

er
b

o
re

an
-i

ro
1
9
4

±
1
4

–
–

6
5

±
1
1

1
5
1

±
1
2

4
4
8

±
1
7

5
6

±
1
0

H
yp

er
b

o
re

an
-t

b
r

–
–

–
–

–
–

–

L
it

tl
eR

o
ck

1
0
9

±
1
6

−
1
4

±
1
0

–
–

8
0

±
1
3

3
7
5

±
1
4

3
±

9

O
w

n
B

o
t

−
5

±
2
4

−
1
8
0

±
1
7

–
−

1
2
9

±
1
8

–
3
5
9

±
2
4

−
1
8
7

±
1
6

p
la

ye
r.

ze
ta

.3
p

−
1
8
0

±
3
2

−
6
8
1

±
2
2

–
−

6
6
1

±
2
1

−
4
5
3

±
2
6

–
−

7
9
2

±
2
1

Sa
rt

re
3p

3
2
5

±
1
6

2
3

±
1
0

–
4
3

±
8

1
5
6

±
1
2

5
3
7

±
1
5

–

20
11

3-
p

la
ye

r
L

im
it

Te
xa

s
H

o
ld

’e
m

(1
o

f2
)



166 JONATHAN RUBIN

E
n

tr
o

p
y

H
yp

er
b

o
re

an
-i

ro
H

yp
er

b
o

re
an

-t
b

r
L

it
tl

eR
o

ck
O

w
n

B
o

t
p

la
ye

r.
ze

ta
.3

p
Sa

rt
re

3p

A
A

IM
o

n
ty

b
o

t
3
1
2

±
6
3

3
6
1

±
6
0

3
7
1

±
9
0

2
3
2

±
8
4

4
9
2

±
4
2

3
2
0

±
6
3

B
n

o
ld

3
−

3
1
7

±
1
7

−
2
8
0

±
1
8

−
2
7
2

±
1
8

−
2
7
8

±
1
9

−
1
1
8

±
3
0

−
2
9
0

±
1
5

d
cu

b
o

t3
p

lr
3
1

±
1
4

–
8
0

±
1
4

−
1
1
2

±
1
9

−
7
2

±
1
7

5
3

±
1
5

E
n

tr
o

p
y

–
–

–
–

–
–

H
yp

er
b

o
re

an
-i

ro
–

–
2
0
0

±
1
4

9
4

±
1
6

2
2
5

±
2
4

1
9
1

±
1
5

H
yp

er
b

o
re

an
-t

b
r

–
–

1
5
8

±
1
6

3
±

1
9

1
5
2

±
1
9

1
5
1

±
1
4

L
it

tl
eR

o
ck

6
1

±
1
5

8
3

±
1
4

–
−

3
1

±
1
8

6
3

±
1
8

8
7

±
1
5

O
w

n
B

o
t

−
9
6

±
2
2

−
6
1

±
1
9

−
4
2

±
2
5

–
4
5
3

±
3
5

−
1
2
7

±
2
4

p
la

ye
r.

ze
ta

.3
p

−
2
8
5

±
3
1

−
2
5
3

±
3
4

−
2
2
4

±
3
4

−
6
8
0

±
3
6

–
−

4
3
0

±
3
3

Sa
rt

re
3p

2
6
2

±
1
4

2
9
0

±
1
4

3
2
2

±
1
5

1
9
7

±
1
9

4
3
1

±
2
2

–

H
yp

er
b

o
re

an
-i

ro
H

yp
er

b
o

re
an

-t
b

r

H
yp

er
b

o
re

an
-t

b
r

L
it

tl
eR

o
ck

O
w

n
B

o
t

p
la

ye
r.

ze
ta

.3
p

Sa
rt

re
3p

L
it

tl
eR

o
ck

O
w

n
B

o
t

p
la

ye
r.

ze
ta

.3
p

Sa
rt

re
3p

A
A

IM
o

n
ty

b
o

t
–

−
1
5
7

±
5
7

−
6
6

±
6
3

2
4
3

±
6
1

−
2
0
9

±
7
1

−
1
6
3

±
5
8

−
7
0

±
7
4

3
0
3

±
6
7

−
2
1
0

±
5
0

B
n

o
ld

3
–

−
1
1
3

±
8

−
6
8

±
1
4

−
6

±
1
6

−
1
2
4

±
1
0

−
1
0
5

±
9

−
3
2

±
9

4
1

±
1
7

−
1
1
4

±
1
1

d
cu

b
o

t3
p

lr
–

−
5
1

±
1
0

3
0

±
1
3

2
3
3

±
1
6

−
7
9

±
1
0

–
–

–
–

E
n

tr
o

p
y

–
−

2
6
2

±
2
4

2
±

2
5

6
0

±
3
8

−
4
5
3

±
2
2

−
2
4
1

±
2
5

5
8

±
2
3

1
0
2

±
3
5

−
4
4
1

±
2
2

H
yp

er
b

o
re

an
-i

ro
–

–
–

–
–

–
–

–
–

H
yp

er
b

o
re

an
-t

b
r

–
–

–
–

–
–

–
–

–

L
it

tl
eR

o
ck

–
–

5
8

±
1
5

2
8
7

±
1
4

−
2
9

±
9

–
6
4

±
1
2

3
2
7

±
1
4

−
2
8

±
8

O
w

n
B

o
t

–
−

2
0
0

±
1
8

–
1
3
0

±
2
6

−
2
5
3

±
1
6

−
1
7
3

±
1
9

–
2
3
8

±
2
2

−
2
2
9

±
1
7

p
la

ye
r.

ze
ta

.3
p

–
−

7
4
2

±
2
2

−
5
2
4

±
2
9

–
−

8
8
4

±
2
1

−
7
0
8

±
2
2

−
5
1
8

±
2
8

–
−

8
5
2

±
1
8

Sa
rt

re
3p

–
−

5
±

9
1
2
1

±
1
2

4
4
3

±
1
5

–
−

3
±

8
1
2
3

±
1
0

4
8
7

±
1
2

–

L
it

tl
eR

o
ck

O
w

n
B

o
t

p
la

ye
r.

ze
ta

.3
p

O
w

n
B

o
t

p
la

ye
r.

ze
ta

.3
p

Sa
rt

re
3p

p
la

ye
r.

ze
ta

.3
p

Sa
rt

re
3p

Sa
rt

re
3p

A
A

IM
o

n
ty

b
o

t
−

2
4

±
5
4

2
7
9

±
6
0

−
1
8
6

±
5
5

3
3
6

±
7
6

−
6
7

±
6
4

2
8
2

±
9
2

B
n

o
ld

3
−

2
7

±
1
2

5
2

±
1
6

−
9
3

±
9

3
9

±
2
5

−
4
1

±
1
4

3
7

±
1
3

d
cu

b
o

t3
p

lr
5
0

±
1
1

2
8
6

±
1
5

−
4
6

±
8

9
4

±
2
2

3
1

±
1
3

2
5
5

±
1
5

E
n

tr
o

p
y

7
3

±
2
2

1
6
1

±
3
4

−
4
0
9

±
2
2

2
2
6

±
3
8

−
7
0

±
2
7

−
1

±
3
5

H
yp

er
b

o
re

an
-i

ro
1
4
2

±
1
2

4
5
5

±
1
7

3
4

±
1
0

3
9
4

±
2
3

1
3
2

±
1
2

4
4
1

±
1
5

H
yp

er
b

o
re

an
-t

b
r

1
1
0

±
1
3

3
8
1

±
1
4

3
1

±
8

2
8
0

±
2
2

1
0
6

±
1
2

3
6
5

±
1
1

L
it

tl
eR

o
ck

–
–

–
2
4
7

±
2
2

6
8

±
1
3

3
2
6

±
1
3

O
w

n
B

o
t

–
2
5
0

±
2
3

−
2
0
1

±
1
8

–
–

2
0
0

±
2
1

p
la

ye
r.

ze
ta

.3
p

−
4
9
7

±
2
5

–
−

8
2
1

±
2
2

–
−

6
5
5

±
2
3

–

Sa
rt

re
3p

1
3
4

±
1
3

4
9
5

±
1
5

–
4
5
5

±
2
0

–
–

20
11

3-
p

la
ye

r
L

im
it

Te
xa

s
H

o
ld

’e
m

(2
o

f2
)



CASE-BASED STRATEGIES IN COMPUTER POKER 167

E
n

tr
o

p
y

Fe
st

e.
ir

o
Fe

st
e.

tb
r

h
u

h
u

er
s

H
yp

er
b

o
re

an
.i

ro
H

yp
er

b
o

re
an

.t
b

r
L

it
tl

e
A

ce
L

it
tl

e
R

o
ck

N
eo

P
o

ke
r

L
ab

P
at

ie
n

ce
Sa

rt
re

Sl
u

m
b

o
t

Z
b

o
t

E
n

tr
o

p
y

–
2
7

±
6

3
5

±
5

8
±

5
−

1
7

±
5

−
1

±
5

4
1

±
6

−
1
0

±
5

−
6

±
6

−
7

±
5

6
±

3
−

2
2

±
5

−
3

±
6

Fe
st

e.
ir

o
−

2
7

±
6

–
6

±
5

−
1
4

±
5

−
4
3

±
6

−
5
5

±
6

8
±

7
−

4
4

±
5

−
3
7

±
6

−
3
6

±
6

−
2
7

±
4

−
4
6

±
5

−
3
3

±
6

Fe
st

e.
tb

r
−

3
5

±
5

−
6

±
5

–
−

2
0

±
6

−
4
4

±
6

−
5
6

±
6

1
±

6
−

4
5

±
6

−
3
2

±
6

−
3
8

±
6

−
3
4

±
5

−
4
7

±
5

−
3
6

±
6

h
u

h
u

er
s

−
8

±
5

1
4

±
5

2
0

±
6

–
−

3
4

±
5

−
1
7

±
6

2
2

±
6

−
2
2

±
5

−
1
0

±
5

−
1
6

±
5

−
7

±
5

−
2
6

±
5

−
1
8

±
5

H
yp

er
b

o
re

an
.i

ro
1
7

±
5

4
3

±
6

4
4

±
6

3
4

±
5

–
3
0

±
5

5
2

±
5

1
6

±
3

2
4

±
5

1
8

±
6

1
5

±
5

−
4

±
3

1
4

±
3

H
yp

er
b

o
re

an
.t

b
r

1
±

5
5
5

±
6

5
6

±
6

1
7

±
6

−
3
0

±
5

–
5
2

±
5

−
8

±
6

−
2

±
5

−
3

±
6

6
±

5
−

3
2

±
6

−
1
8

±
6

L
it

tl
e

A
ce

−
4
1

±
6

−
8

±
7

−
1

±
6

−
2
2

±
6

−
5
2

±
5

−
5
2

±
5

–
−

4
0

±
6

−
3
0

±
6

−
4
1

±
6

−
5
0

±
5

−
5
5

±
5

−
4
4

±
6

L
it

tl
e

R
o

ck
1
0

±
5

4
4

±
5

4
5

±
6

2
2

±
5

−
1
6

±
3

8
±

6
4
0

±
6

–
7

±
6

7
±

6
1
7

±
5

−
1
8

±
3

−
3

±
3

N
eo

P
o

ke
r

L
ab

6
±

6
3
7

±
6

3
2

±
6

1
0

±
5

−
2
4

±
5

2
±

5
3
0

±
6

−
7

±
6

–
1

±
6

7
±

5
−

2
2

±
5

−
1
1

±
5

P
at

ie
n

ce
7

±
5

3
6

±
6

3
8

±
6

1
6

±
5

−
1
8

±
6

3
±

6
4
1

±
6

−
7

±
6

−
1

±
6

–
7

±
5

−
2
6

±
5

−
1
1

±
5

Sa
rt

re
−

6
±

3
2
7

±
4

3
4

±
5

7
±

5
−

1
5

±
5

−
6

±
5

5
0

±
5

−
1
7

±
5

−
7

±
5

−
7

±
5

–
−

1
9

±
5

−
7

±
5

Sl
u

m
b

o
t

2
2

±
5

4
6

±
5

4
7

±
5

2
6

±
5

4
±

3
3
2

±
6

5
5

±
5

1
8

±
3

2
2

±
5

2
6

±
5

1
9

±
5

–
2
1

±
4

Z
b

o
t

3
±

6
3
3

±
6

3
6

±
6

1
8

±
5

−
1
4

±
3

1
8

±
6

4
4

±
6

3
±

3
1
1

±
5

1
1

±
5

7
±

5
−

2
1

±
4

–

20
12

H
ea

d
s-

u
p

L
im

it
Te

xa
s

H
o

ld
’e

m



168 JONATHAN RUBIN

A
zu

re
Sk

y
d

cu
b

o
t

H
u

gh
H

yp
er

b
o

re
an

L
it

tl
e

R
o

ck
Lu

ck
y7

12
N

eo
P

o
ke

r
L

ab
Sa

rt
re

N
L

Sp
ew

y
L

o
u

ie
Ta

rt
an

ia
n

5
U

n
i-

M
B

p
o

ke
r

A
zu

re
Sk

y
–

4
8
4
8

±
6
6

−
2
8
7
7

±
1
1
6

−
2
3
3
3

±
1
3
2

−
5
1
7
0

±
1
3
9

2
2
9
5

±
1
6
2

−
2
0
0
9

±
1
0
2

5
5
9

±
1
4
6

−
3
2
3
7

±
1
5
6

−
2
9
5
4

±
9
6

8
9
2
0

±
2
3
0

d
cu

b
o

t
−

4
8
4
8

±
6
6

–
−

7
5
6

±
2
9

−
4
9
8

±
2
7

−
1
1
0
6

±
3
7

−
1
6
0
5

±
4
1

−
7
0
6

±
3
5

−
3
3
3

±
3
5

−
6
8
3

±
3
5

−
7
5
4

±
3
6

3
1
6

±
3
1

H
u

gh
2
8
7
7

±
1
1
6

7
5
6

±
2
9

–
−

1
6
5

±
3
6

−
2
8
4

±
3
9

7
9
4

±
7
1

−
3
1
4

±
5
2

7
8

±
3
3

2
9
0

±
5
7

1
0
2

±
3
0

6
9
3

±
3
8

H
yp

er
b

o
re

an
2
3
3
3

±
1
3
2

4
9
8

±
2
7

1
6
5

±
3
6

–
1
9
9

±
6
4

5
7
1

±
6
5

1
8
6

±
3
4

1
2
5

±
3
7

5
0
3

±
6
3

1
6
1

±
3
6

1
1
2
1

±
9
6

L
it

tl
e

R
o

ck
5
1
7
0

±
1
3
9

1
1
0
6

±
3
7

2
8
4

±
3
9

−
1
9
9

±
6
4

–
1
3
1
7

±
1
0
4

4
4

±
5
1

2
2
3

±
6
1

5
8
2

±
6
4

−
1
6
5

±
6
3

2
8
0
2

±
1
1
1

Lu
ck

y7
12

−
2
2
9
5

±
1
6
2

1
6
0
5

±
4
1

−
7
9
4

±
7
1

−
5
7
1

±
6
5

−
1
3
1
7

±
1
0
4

–
−

8
7
1

±
6
7

−
7
3
6

±
8
8

−
9
5
6

±
8
1

−
5
3
6

±
9
4

−
1
6
1
7

±
2
3
7

N
eo

P
o

ke
r

L
ab

2
0
0
9

±
1
0
2

7
0
6

±
3
5

3
1
4

±
5
2

−
1
8
6

±
3
4

−
4
4

±
5
1

8
7
1

±
6
7

–
2

±
5
3

4
3
4

±
5
4

−
8

±
3
1

1
2
3
7

±
6
6

Sa
rt

re
N

L
−

5
5
9

±
1
4
6

3
3
3

±
3
5

−
7
8

±
3
3

−
1
2
5

±
3
7

−
2
2
3

±
6
1

7
3
6

±
8
8

−
2

±
5
3

–
1
4
1

±
7
6

−
5
6

±
3
8

9
5
2

±
6
1

Sp
ew

y
L

o
u

ie
3
2
3
7

±
1
5
6

6
8
3

±
3
5

−
2
9
0

±
5
7

−
5
0
3

±
6
3

−
5
8
2

±
6
4

9
5
6

±
8
1

−
4
3
4

±
5
4

−
1
4
1

±
7
6

–
−

6
1
4

±
6
0

1
2
3
9

±
1
1
9

Ta
rt

an
ia

n
5

2
9
5
4

±
9
6

7
5
4

±
3
6

−
1
0
2

±
3
0

−
1
6
1

±
3
6

1
6
5

±
6
3

5
3
6

±
9
4

8
±

3
1

5
6

±
3
8

6
1
4

±
6
0

–
1
1
4
8

±
6
1

U
n

i-
M

B
p

o
ke

r
−

8
9
2
0

±
2
3
0

−
3
1
6

±
3
1

−
6
9
3

±
3
8

−
1
1
2
1

±
9
6

−
2
8
0
2

±
1
1
1

1
6
1
7

±
2
3
7

−
1
2
3
7

±
6
6

−
9
5
2

±
6
1

−
1
2
3
9

±
1
1
9

−
1
1
4
8

±
6
1

–

20
12

H
ea

d
s-

u
p

N
o

-L
im

it
Te

xa
s

H
o

ld
’e

m



CASE-BASED STRATEGIES IN COMPUTER POKER 169

d
cu

b
o

t
H

yp
er

b
o

re
an

L
it

tl
e

R
o

ck
N

eo
P

o
ke

r
L

ab

H
yp

er
b

o
re

an
L

it
tl

e
R

o
ck

N
eo

P
o

ke
r

L
ab

Sa
rt

re
3p

L
it

tl
e

R
o

ck
N

eo
P

o
ke

r
L

ab
Sa

rt
re

3p
N

eo
P

o
ke

r
L

ab
Sa

rt
re

3p
Sa

rt
re

3p

d
cu

b
o

t
–

–
–

–
−

6
5

±
1
1

−
6
5

±
1
0

−
6
4

±
1
1

−
5
8

±
1
1

−
6
2

±
1
0

−
6
0

±
9

H
yp

er
b

o
re

an
–

4
3

±
8

4
8

±
9

5
0

±
1
0

–
–

–
2
3

±
8

2
6

±
7

3
4

±
6

L
it

tl
e

R
o

ck
2
2

±
8

–
3
1

±
9

3
6

±
9

–
−

9
±

9
−

9
±

8
–

–
6

±
8

N
eo

P
o

ke
r

L
ab

1
6

±
7

2
7

±
8

–
3
3

±
7

−
1
4

±
6

–
−

1
5

±
7

–
−

5
±

8
–

Sa
rt

re
3p

1
4

±
9

2
6

±
1
0

2
7

±
9

–
−

1
7

±
9

−
1
9

±
8

–
−

1
±

8
–

–

20
12

3-
p

la
ye

r
L

im
it

Te
xa

s
H

o
ld

’e
m



170 JONATHAN RUBIN



Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational issues, method-

ological variations, and system approaches. AI Commun., 7(1):39–59, 1994.

[2] ACPC. The Annual Computer Poker Competition, 2013. http://www.

computerpokercompetition.org/.

[3] David W. Aha. Editorial. Artificial Intelligence Review, 11(1-5):7–10, 1997.

[4] David W. Aha, Matthew Molineaux, and Marc J. V. Ponsen. Learning to win: Case-based

plan selection in a real-time strategy game. In 6th International Conference on Case-Based

Reasoning, ICCBR 2005, pages 5–20. Springer, 2005.

[5] Marv Andersen. Web posting at pokerai.org forums, general forums, August 2009. http:

//pokerai.org/pf3/viewtopic.php?t=2259&start=18.

[6] Rickard Andersson. Pseudo-optimal strategies in no-limit poker. Master’s thesis, Umea

University, 2006.
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