
Successful Performance via Decision Generalisation in No Limit Texas Hold’em

Jonathan Rubin and Ian Watson
Department of Computer Science

University of Auckland, New Zealand
jrubin@gmail.com, ian@cs.auckland.ac.nz

Abstract
Given a set of data, recorded by observing the de-
cisions of an expert player, we present a case-based
framework that allows the successful generalisation
of those decisions in the game of no limit Texas
Hold’em. We address the problems of determin-
ing a suitable action abstraction and the resulting
state translation that is required to map real-value
bet amounts into a discrete set of abstract actions.
We also detail the similarity metrics used in order
to identify similar scenarios, without which no gen-
eralisation of playing decisions would be possible.
We show that we were able to successfully gener-
alise no limit betting decisions from recorded data
via our agent, SartreNL, which achieved a 5th place
finish out of 11 opponents at the 2012 Annual Com-
puter Poker Competition.

1 Introduction
In 2008 the Second Man-Machine Poker Competition was
won by a computer poker robot named Polaris [Bowling et
al., 2009]. Polaris challenged a group of professional hu-
man players to the game of limit Texas Hold’em, beating its
competitors by a statistically significant margin. The suc-
cess of Polaris can (at least in part) be attributed to the in-
creasing popularity of Texas Hold’em poker as a research
domain and advances in game theoretic equilibrium find-
ing algorithms [Sandholm, Winter 2010; Rubin and Wat-
son, April 2011]. Polaris’s victory occurred in the game of
limit Texas Hold’em, where the amount able to be wagered
is restricted by pre-determined bet sizes. Today, the most
popular variation of the game is no limit Texas Hold’em,
where players’ bet sizes are no longer restricted. This al-
lows a player to wager any amount they wish (up to the to-
tal amount of chips they possess). This simple rule change
has a profound effect on the nature of the game, as well
as on the development of computerised agents that wish to
handle the no limit betting structure. While the Polaris sys-
tem was able to beat world-class human opposition in the
game of limit Hold’em, nothing like Polaris’s victory has
been achieved in the more complicated domain of no limit
Hold’em. In fact, it is only relatively recently that many re-
searchers have shifted their attention to the more complicated

domain of no limit Texas Hold’em [Schnizlein et al., 2009;
Van den Broeck et al., 2009; Gilpin et al., 2008].

Our previous research has focused on the techniques of ex-
pert imitation to achieve strong performance in the domain
of limit Texas Hold’em [Rubin and Watson, 2010]. In this
current work, we apply the same principles of expert imi-
tation and decision generalisation to the more complicated
domain of no limit Texas Hold’em. For automated no limit
poker agents, a non-trivial translation phase is required to
map quantitative bet amounts into discrete betting categories.
Furthermore, our approach requires the construction of met-
rics to determine similarity between complicated no limit bet-
ting sequences (without which no generalisation would be
able to take place). Our approach allows the successful im-
itation of any designated expert player (artificial or human),
given a large enough set of training data. We present results
from the 2012 Annual Computer Poker Competition (ACPC),
where our entry to the competition, SartreNL, achieved a 5th
place finish in the no limit equilibrium run-off event 1.

2 Background
In [Rubin and Watson, 2010] we focused on expert imita-
tion via a case-based approach within the domain of limit
Texas Hold’em. Expert decisions recorded from a set of train-
ing data were encoded into cases and playing decisions were
made at runtime by searching a case-base. While we employ
a similar framework for our current work, the transition to
a no limit domain results in unique challenges that are not
encountered in a limit poker environment. First, there is the
issue of establishing a set of abstract betting actions that all
real actions will be mapped into during game play. This is
referred to as action abstraction and it allows the vast, con-
tinuous domain of no limit Hold’em to be approximated by
a much smaller abstract state space. Second, given an estab-
lished set of abstract actions, a translation process is required
that determines how best to map real actions into their appro-
priate abstract counterparts, as well as a reverse translation
that maps abstract actions back into appropriate real-world
betting decisions.

Both action abstraction and state translation are issues
that are also required to be addressed in the construction of no

1http://www.computerpokercompetition.org



Table 1: The case representation used by SartreNL. The four features capture important game state information. A solution is
made up of an action and outcome tuple.

Feature Type Example
1. Hand Strength Bucket Integer 1 – 50

2. Betting Sequence String pdc-cqc-c, cc-, dc-qc-ci, ...

3. Stack Commitment Integer 1,2,3,4

No-Salient, Flush-Possible,
4. Board Texture Class Straight-Possible, Flush-Highly-Possible,

...
Action n-tuple (0.0, 1.0, 0.0, 0.0, ...), ...

Outcome n-tuple (-∞, 36.0, -∞, -∞, ...), ...

limit ε-Nash equilibrium strategies via algorithmic game the-
ory. A pair of strategies are said to be an ε-Nash equilibrium
if either player cannot gain more than ε by deviating their
strategy. An early attempt to construct a no limit Hold’em
agent via game theoretic methods is described by Ander-
sson [Andersson, 2006]. Andersson extended the proce-
dures used to construct ε-Nash equilibrium-based limit poker
agents [Billings et al., 2003] to the no limit domain.

Another no limit poker agent produced via game theoretic
algorithms is Tartanian [Gilpin et al., 2008]. Tartanian was
able to build models for much larger starting chip stacks than
the work presented by [Andersson, 2006].

While our current work is required to deal with many of
the same issues and challenges faced by ε-Nash Equilibrium
strategies, the focus of our approach is more to do with ex-
pert imitation and investigating the generalisation of playing
decisions from game traces.

3 Overview
Given a set of (artificial or real-world) training data, our agent
SartreNL, is able to generalise the decisions recorded within
the data by constructing and storing a collection of cases.
Each case attempts to capture important game state informa-
tion that is likely to have an impact on the final betting deci-
sion. Table 1 depicts a collection of attribute-value pairs that,
when taken together, captures a particular game scenario. All
attributes were selected by the authors, given their importance
in determining a final betting decision.

Each case also records a solution. A solution is made up
of two n-tuples, one which specifies action probabilities and
another which specifies the average outcome of taking the ob-
served action in the past. The entries within each tuple corre-
spond to a particular betting decision. The entries within the
action tuple must sum to one.

During game play values are assigned to each attribute and
the previously stored collection of cases are searched for at-
tributes with similar values. The case with the highest global
similarity is assumed to be most similar to the current situa-
tion. Once a similar case has been retrieved a betting decision
is made by re-using the tuples within that case’s solution.

Each attribute-value pair is described in more detail below:

Hand Strength Bucket This is given by rolling out all pos-
sible combinations of community cards and determining
the proportion of the time the player’s hand wins against
the set of all possible opponent holdings. Values are
mapped into a discrete set of buckets that contain hands
of similar strength.

Betting Sequence The betting sequence attribute is given by
a string of characters where each character is an ob-
served game action. As any betting value can be ob-
served in the real game, a discrete set of abstract actions
are chosen to represent real betting actions.

Stack Commitment The proportion of chips committed by
a player, compared to the player’s stack size. The stack
commitment feature maps this value into one of N cate-
gories, where N is a specified granularity.

Board Texture The board texture attribute maps a collection
of community cards to one of nine categories that high-
light important information such as whether a straight or
flush is possible.

4 Action Abstraction
Recall that abstraction is a concept used by game theoretic
poker agents that derive ε-Nash equilibrium strategies for the
game of Texas Hold’em. As the actual Hold’em game tree is
much too large to represent and solve explicitly, it becomes
necessary to impose certain abstractions that help restrict the
size of the original game. For Texas Hold’em, there are two
main types of abstraction:

1. Chance abstraction – which reduces the number of
chance events that are required to be dealt with. This
is typically achieved by grouping strategically similar
hands into a restricted set of buckets.

2. Action abstraction – which restricts the number of ac-
tions a player is allowed to perform.

A typical abstraction such as: fcpa, restricts the allowed
actions to: f – fold, c – call, p – bet the size of the pot a – all-
in (i.e. the player bets all their remaining chips). Given this



abstraction, all actions are interpreted by assigning the actual
actions into one of their abstract counterparts.

While SartreNL does not attempt to derive an ε-Nash equi-
librium solution for no limit Hold’em, it is still required to
define an action abstraction in order to restrict the number of
actions allowed in the game and hence reduce the state space.
SartreNL uses the following action abstraction: fcqhipdvta,
where each entry refers to different discrete betting categories
as follows: fold (f ), call (c), raise quarter pot (q), raise half
pot (h), raise three quarter pot (i), raise pot (p), raise double
pot (d), raise five times pot (v), raise ten times pot (t), all-in
(a).

5 Translation
Given that all bets need to be mapped into abstract actions, a
translation process is required to define the appropriate map-
ping. [Schnizlein et al., 2009] formalise two types of transla-
tion: hard translation and soft translation.

• Hard Translation: is a many to one mapping that maps
an unabstracted betting value into an abstract action
based on a chosen distance metric. Given a unique unab-
stracted betting value, hard translation will always map
this value into the same abstract action. A disadvantage
of hard translation is that an opponent can exploit this
mapping simply by selecting particular betting values.

• Soft Translation: is a probabilistic state translation that
uses normalised weights as similarity measures to map
an unabstracted betting value into an abstract action.
The use of a probabilistic mapping ensures that soft
translation cannot be exploited like hard translation can.

SartreNL uses both hard and soft translation. The type of
translation that takes place differs depending on where trans-
lation occurs within the system. The exact details of the trans-
lation used within the different areas of the system are now
presented.

Define A = {q, h, i, p, d, v, t, a} to be the set of abstract
betting actions. Note that the actions f and c are omitted as
these require no mapping.

1. During case-base construction, where hand history logs
from previously played hands are encoded into cases,
SartreNL uses the hard translation function Th : < → A,
as follows:

Th(b) =

{
a if a

b >
b
c

c otherwise (1)

where b ∈ < is the proportion of the total pot that has
been bet in the actual game and a, c ∈ A are abstract ac-
tions that map to actual pot proportions in the real game
and a <= b < c. The fact that hard translation has the
capability to be exploited is not a concern during case-
base construction. Hard translation is used during this
stage to ensure that re-training the system with the same
hand history data will result in the same case-base.

2. During actual game play SartreNL is required to map
opponent betting actions (as well as its own actions) to

abstract categories. Observant opponents have the ca-
pability to exploit deterministic mappings during game
play, hence SartreNL uses a soft translation function for
this stage, Ts : < → A, given by the following proba-
bilistic equations:

P (a) =
a
b −

a
c

1− a
c

(2)

P (c) =
b
c −

a
c

1− a
c

(3)

where once again, b ∈ < is the proportion of the to-
tal pot that has been bet in the actual game and a, c ∈
A are abstract actions that map to actual pot propor-
tions in the real game and a <= b < c. Note that
when b = a, P (a) = 1 and P (c) = 0 and when
b = c, P (a) = 0 and P (c) = 1. Hence, a betting ac-
tion that maps directly to an abstract action in A does
not need to be probabilistically selected. On the other
hand, when b 6= a and b 6= c, abstract actions are cho-
sen probabilistically. Also, notice that in Equations (2)
and (3), P (x) + P (y) 6= 1 and hence a final abstract ac-
tion is probabilistically chosen by first normalising these
values.

3. The final place that translation is required is when
SartreNL has determined an appropriate abstract ac-
tion to play. A reverse mapping is then required to
map the abstract action into an appropriate real betting
value, given the current game conditions. SartreNL uses
the following function to perform reverse translation,
Tr : A→ <:

Tr(a) = a′ ±∆a′ (4)

where a ∈ A and a′ ∈ < is the real value corresponding
to abstract action a and ∆a′ is some random proportion
of the bet amount that is used to ensure SartreNL does
not always map abstract actions to their exact real world
counterparts. For example, when a′ = 100 and ∆ = 0.3,
SartreNL could bet any amount between 70 - 130 chips.

6 Similarity
In order to generalise no limit betting decisions, it is first re-
quired to locate similar scenarios for which solutions have
been recorded in the past. Given a target case, t, that describes
the immediate game environment, a source case, s ∈ S,
where S is the entire collection of previously recorded cases
and a set of features, F , global similarity is computed by sum-
ming each feature’s local similarity contribution, simf , and
dividing by the total number of features:

G(t, s) =
∑
f∈F

simf (tf , sf )

|F |
(5)

We now present the local similarity metrics (simf ) re-
quired in order to generalise betting decisions from a collec-
tion of data.



Table 2: Bankroll instant run-off results. This table is replicated from the 2012 ACPC
Round 0 Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9

1. Hyperborean 586± 30 527± 28 530± 31 273± 23 223± 25 167± 27 167± 31 181± 37 174± 24 161± 36

2. Tartanian5 597± 27 536± 27 509± 30 159± 30 97± 27 -7± 26 17± 29 4± 34 -76± 27 -161± 36

3. NeoPokerLab 534± 23 456± 23 424± 25 198± 23 86± 26 16± 28 -58± 31 -78± 32 -97± 23 –
4. Little Rock 1116± 27 929± 28 907± 30 298± 26 128± 25 37± 27 -24± 35 -107± 35 – –
5. SartreNL 112± 25 19± 25 -21± 29 56± 22 -57± 22 -97± 23 -101± 27 – – –
6. Hugh 483± 18 459± 19 422± 22 71± 18 -49± 17 -117± 18 – – – –
7. Spewy Louie 355± 28 257± 29 204± 33 -230± 31 -427± 31 – – – – –
8. Lucky7 12 -809± 57 -719± 47 -1009± 52 -826± 45 – – – – – –
9. Azure Sky -196± 65 -1209± 60 -1966± 68 – – – – – – –
10. dcubot -1097± 15 -1254± 16 – – – – – – – –
11. UNI-mb -1681± 47 – – – – – – – – –

6.1 Hand Strength Bucket
The following metric is used to determine similarity between
two hand strength buckets (f1, f2).

sim(f1, f2) = max{1− k · |f1 − f2|
T

, 0} (6)

Here, T refers to the total number of buckets that have been
defined, where f1, f2 ∈ [1, T ] and k is a scalar parameter
used to adjust the rate at which similarity should decrease.
SartreNL uses values of T = 50 and k = 2.

6.2 Stack Commitment
The stack commitment metric uses an exponentially decreas-
ing function.

sim(f1, f2) = e(−|f1−f2|) (7)
where, f1, f2 ∈ [1, N ] and N refers to the granularity used

for the stack commitment attribute. This function was chosen
as small differences between two stack commitment attributes
(f1, f2) should result in large drops in similarity. SartreNL
uses a granularity of N = 4.

6.3 Betting Sequence
For two betting sequences to be considered similar each se-
quence must contain the same number of elements and any
calls (c) or all-in bets (a) that occur within sequence S1 must
also occur at the same location in sequence S2. Exactly how
dissimilar two individual bets are to each other can be quan-
tified by how far away from each other they occur within
the bet discretisation string: qhipdvt, e.g. δ(h, i) = 1 and
δ(q, t) = 6.

For two betting sequences S1, S2 overall similarity is de-
termined by (8):

sim(S1, S2) =


1−

∑|S1|
i=0 δ(S1,i, S2,i)α if |S1| = |S2|,

S1,i = c⇒ S2,i = c,
S1,j = a⇒ S2,j = a

0 otherwise
(8)

where the notation S1,i, S2,i refers to the ith character in
the betting sequences S1 and S2, respectively and α is some
constant rate of decay.

6.4 Board Texture

To determine similarity between board texture categories a
similarity matrix of hand picked values was derived by the
authors.

7 Results

A version of the system described above was submitted to the
2012 Annual Computer Poker Competition. Our entry to the
competition was trained on data from the best no limit agent
of the 2011 competition. The ACPC is the premier computer
poker event and has been held each year at either AAAI or
IJCAI conferences since 2006. Entrance into the competition
is open to anyone and the agents submitted typically represent
the current state of the art in computer poker.

Table 2 presents a cross-table of results between competi-
tors at the 2012 heads-up no limit competition. A green cell
indicates a win for the row player and a red cell indicates a
loss for that player. Cells with a lighter background represent
matches that were not statistically significant. The figures
presented in Table 2 are in milli big blinds per hand (mb/h),
where the total number of big blinds won are divided by the
number of hands played, and the result is multiplied by 1000.

Table 2 presents the final results of the instant run-off com-
petition. The instant run-off competition uses a recursive
winner determination algorithm that repeatedly removes the
agents that performed the worst against a current pool of play-
ers.

8 Conclusion

Our results support the idea that generalising decisions via ex-
pert imitation has the ability to produce strong, sophisticated
strategies in complex, imperfect information environments.
Table 2 shows that these strategies can lead to successful per-
formance compared with alternative approaches. In particu-
lar, the SartreNL system produced by the framework achieved
a 5th place finish out of 11 competitors at the 2012 ACPC no
limit, instant run-off competition.



References
[Andersson, 2006] Rickard Andersson. Pseudo-optimal

strategies in no-limit poker. Master’s thesis, Umea Uni-
versity, 2006.

[Billings et al., 2003] Darse Billings, Neil Burch, Aaron
Davidson, Robert C. Holte, Jonathan Schaeffer, Terence
Schauenberg, and Duane Szafron. Approximating game-
theoretic optimal strategies for full-scale poker. In IJCAI-
03, Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence, pages 661–668, 2003.

[Bowling et al., 2009] Michael Bowling, Nicholas Abou
Risk, Nolan Bard, Darse Billings, Neil Burch, Joshua
Davidson, John Hawkin, Robert Holte, Michael Johanson,
Morgan Kan, Bryce Paradis, Jonathan Schaeffer, David
Schnizlein, Duane Szafron, Kevin Waugh, and Martin
Zinkevich. A demonstration of the polaris poker sys-
tem. In AAMAS ’09: Proceedings of The 8th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, pages 1391–1392, Richland, SC, 2009. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

[Gilpin et al., 2008] Andrew Gilpin, Tuomas Sandholm, and
Troels Bjerre Sørensen. A heads-up no-limit texas
hold’em poker player: discretized betting models and au-
tomatically generated equilibrium-finding programs. In
7th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008), pages 911–918,
2008.

[Rubin and Watson, 2010] Jonathan Rubin and Ian Watson.
Similarity-based retrieval and solution re-use policies in
the game of texas hold’em. In Lecture Notes in Computer
Science, 2010, Volume 6176. Case-Based Reasoning. Re-
search and Development, 18th International Conference
on Case-Based Reasoning., pages 465–479. Springer-
Verlag, 2010.

[Rubin and Watson, April 2011] Jonathan Rubin and Ian
Watson. Computer poker: A review. Artificial Intelligence,
145(5-6):958–987, April 2011.

[Sandholm, Winter 2010] Tuomas Sandholm. The state of
solving large incomplete-information games, and applica-
tion to poker. AI Magazine, Winter, 2010.

[Schnizlein et al., 2009] David Schnizlein, Michael H.
Bowling, and Duane Szafron. Probabilistic state trans-
lation in extensive games with large action sets. In
IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, pages 278–284,
2009.

[Van den Broeck et al., 2009] Guy Van den Broeck, Kurt
Driessens, and Jan Ramon. Monte-carlo tree search in
poker using expected reward distributions. In Advances
in Machine Learning, First Asian Conference on Machine
Learning, ACML 2009, pages 367–381, 2009.


