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A B S T R A C T

Background: Early deterioration indicators have the potential to alert hospital care staff in advance of adverse
events, such as patients requiring an increased level of care, or the need for rapid response teams to be called.
Our work focuses on the problem of predicting the transfer of pediatric patients from the general ward of a
hospital to the pediatric intensive care unit.
Objectives: The development of a data-driven pediatric early deterioration indicator for use by clinicians with the
purpose of predicting encounters where transfer from the general ward to the PICU is likely.
Methods: Using data collected over 5.5 years from the electronic health records of two medical facilities, we
develop machine learning classifiers based on adaptive boosting and gradient tree boosting. We further combine
these learned classifiers into an ensemble model and compare its performance to a modified pediatric early
warning score (PEWS) baseline that relies on expert defined guidelines. To gauge model generalizability, we
perform an inter-facility evaluation where we train our algorithm on data from one facility and perform eva-
luation on a hidden test dataset from a separate facility.
Results: We show that improvements are witnessed over the modified PEWS baseline in accuracy (0.77 vs. 0.69),
sensitivity (0.80 vs. 0.68), specificity (0.74 vs. 0.70) and AUROC (0.85 vs. 0.73).
Conclusions: Data-driven, machine learning algorithms can improve PICU transfer prediction accuracy compared
to expertly defined systems, such as a modified PEWS, but care must be taken in the training of such approaches
to avoid inadvertently introducing bias into the outcomes of these systems.

1. Introduction

Approximately 1–3% of pediatric patients admitted to the general
ward of a hospital will be transferred to the pediatric intensive care unit
(PICU) due to a deterioration in health [1]. Many guideline-based early
warning score (EWS) systems that monitor a patient's state of health
have been proposed to address this problem [2–4], as have data-driven
approaches that rely on machine learned classifiers [5,6]. However, the
majority of these systems have focused on adult populations, with less
focus on pediatric patients where it is known that vital sign measure-
ments, such as heart rate and respiration rate differ markedly in young
children compared with adolescents and adults. Moreover, existing
EWS systems aimed at young populations, such as Pediatric Early
Warning Score (PEWS) [7,8], rely on manual spot check observations
made by nursing staff, such as the capillary nail refill test, which means
input into the system is subjective. An automated method that detects

early deterioration in pediatric patients using physiologic vital sign
information offers several advantages:

1. It ensures that patients that are in danger of deteriorating receive
timely care and attention, thereby minimizing or avoiding harm to
the patient due to the occurrence of a significant adverse event.

2. It does not rely on manually recorded information that is prone to
subjective bias, such as capillary refill in the PEWS system.

3. It can inform the allocation of hospital resources.
4. It can reinforce the intuition of hospital care staff and act as further

evidence when decisions about level of care are required to be made.

In this work, we present the development of an automated early
deterioration algorithm for pediatric populations within a hospital's
general ward. Our models accept a patient's age as input, as well as
physiologic vital sign measurements. This information is used to make a
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prediction about the likelihood of the patient transferring from the
general ward to the PICU.

We compare two approaches based on ensemble boosting for
creating transfer prediction models. The first relies on an adaptive
boosting algorithm [9,10] that employs single level decision trees as its
base classifier. The adaptive boosting procedure is altered to consider a
patient's age for learning risk thresholds. The second approach con-
structs an ensemble of CART models (classification and regression
trees) using extreme gradient boosting [11]. Finally, we combine the
predictions of both the adaptive boosting and gradient boosting models
into an ensemble and evaluate its performance. We compare the results
of our boosting-based classifiers to a version of the Bedside PEWS
Scoring System [8], which was modified based on available input data.

2. Cohort

Data was collected over a 5.5 year period from the electronic health
records of two medical centers: Banner Thunderbird Medical Center
and Banner Desert Medical Center. Encounters that occurred in the
pediatric general ward(s) and pediatric intensive care unit were in-
cluded in the datasets. Encounters where transfer occurred from the
general ward to the PICU were determined using location and time-
stamp information from the electronic health record. All patients be-
tween the ages of 1 month and less than 20 years were included in the
dataset. The study was approved by the Institutional Review Board
(IRB) of Banner Health (Mesa, AZ, USA).

Table 1 summarizes the details regarding the number of unique
patients and encounters, as well as patient demographic information.
The values in Table 1 confirm that, for both facilities, there is a large
imbalance between the number of pediatric encounters that resulted in
transfer to the PICU compared to those that did not.

3. Feature selection, data preprocessing and splitting

3.1. Feature selection

We wished to construct a system that, given a snapshot of objective
inputs, could make a determination about the likelihood of a patient
being transferred to the PICU. The following features were selected to
be used as inputs into the prediction model: 1. Heart Rate (HR); 2. O2

Saturation (O2); 3. Respiratory Rate (RR); 4. Temperature (Temp); 5.
Diastolic Blood Pressure (dBP); 6. Systolic Blood Pressure (sBP); 7.
Patient Age; 8. Pulse Pressure (sBP− dBP); 9. Approximate Mean
Arterial Pressure (2/3dBP+1/3sBP); and 10. Shock Index (HR/sBP).

The features listed above include direct vital sign measurements,
age of the patient and three measurements derived from vital sign in-
puts. Laboratory values were also considered as input, as they have
been included as features in adult deterioration indicators [12,5].
However, the extra stress induced in pediatric populations by per-
forming blood draws meant that these inputs were generally collected
less often and would likely be less available in practice, hence they were

excluded as features. Spot check measurements such as Capillary Refill
and Skin Color, originally included within PEWS systems, were ex-
cluded from the analysis due to their subjective nature.

3.2. Data preprocessing

For each encounter that resulted in transfer to the PICU, feature
values were retrieved from the electronic health record. Feature vectors
were populated from clinical event measurements that occurred at least
2 h preceding the time of transfer and at most 8 h preceding transfer.
The value used for each feature was the final clinical measurement
recorded within the observation window, hence, each instance captured
a snapshot of deterioration. Each instance that resulted in transfer was
matched by a corresponding encounter that did not result in transfer.
For non-transfer instances, a random 6 h observation window was se-
lected and a snapshot of feature inputs consisting of the last recorded
value in the observation window was used. In the case where no
measurement was recorded for an input value within the 6 h observa-
tion window that feature's value was recorded as missing.

3.3. Data splitting

3.3.1. Training/cross-validation
Eighty percent of data from the Desert facility was used as training

data. 10-fold cross validation was used to split this training data into
separate folds. Choice of which hyperparameters to use for our models
was based on maximizing the average cross-validation score over all 10
folds. Area under the receiver operating characteristic (AUROC) was
used as the metric for optimization.

3.3.2. Testing
Twenty percent of data from the Desert facility was set aside as held-

out test data. Stratified sampling was used to ensure an even class
distribution.

One hundred percent of data from the Thunderbird facility was set
aside as a separate held-out test-set, i.e. no encounter from the
Thunderbird facility was used in model training/cross-validation. This
decision was made to ensure that the final results obtained on the test-
set accurately reflected generalizability between individual facilities.
For the Desert dataset, it was further ensured that no patient who had
any encounters in the training/cross-validation sets was included in the
test set.

4. PICU transfer prediction algorithm

We compared two variants of boosting algorithms [13] for distin-
guishing between encounters that resulted in transfer to the PICU
versus those that did not. Both algorithms were required to gracefully
deal with missing feature values, as our dataset consisted of instances
where certain vital sign information was missing and future deployment
of such a system would require effective handling of missing informa-
tion.

We wish to learn a model, Fm(x)= y, by recursively constructing
baseline (“weak”) classifiers, h(x), fit to a specified loss function, L(y, F
(x)). Beginning with an initial model F0(x), the final model, Fm(x), is
defined recursively by combing the predictions of the previous model,
Fm−1(x), with h(x).

= + ≥−F x F x αh x m( ) ( ) ( ), 1m m 1 (1)

where α is a scaling factor and m is the total number of baseline clas-
sifiers to fit.

4.1. Adaptive boosting

We first train an adaptive boosting classifier that seeks to add
baseline classifiers, h(x), that will minimize an exponential loss

Table 1
Patient encounters and demographic information per hospital facility.

Desert Thunderbird

Transferred Non-transferred Transferred Non-transferred

Patients 305 (3.0%) 9982 (97.0%) 98 (1.9%) 5042 (98.1%)
Encounters 330 (2.6%) 12536 (97.4%) 102 (1.7%) 6005 (98.3%)

Average age 5.4± 5.7 6.1± 5.8 5.5±6.1 6.3± 6.0

Gender
– Female 130 (42.6%) 4491 (45.0%) 35 (35.7%) 2292 (45.5%)
– Male 174 (57.1%) 5273 (52.8%) 59 (60.2%) 2622 (52.0%)
– Missing 1 (0.3%) 218 (2.2%) 4 (4.1%) 128 (2.5%)
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where n, is the number of instances, wi is the current weight distribution
over instances and x(i), y(i) refers to the ith training data instance and
label, respectively. A variation of adaptive boosting known as
AdaBoost-abstain [9,10] was employed to handle missing feature va-
lues. AdaBoost-abstain allows each baseline classifier to abstain from
voting if its dependent feature is missing. We use the class of 1-di-
mensional decision stumps as base classifiers, where each classifier
votes by comparing one feature, xj, in the data to a threshold, τ and
produces a classification output of +1 (positive), −1 (negative), or 0
(abstains, when the jth feature is missing, xj= ϕ).
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To account for age-dependent clinical features, a modification is
made to the algorithm where decision thresholds are computed based
on a number of predefined age groups beginning with 3 month intervals
for patients less than 1 year of age ([0–3 months], [3–6 months], …,
[9–12 months]) and followed by 1.5 year intervals up to age 20 ([1–2.5
years] … [18.5–20 years]). Including the patient's age in each weak
classifier allows us to learn age-dependent risk thresholds and com-
pensate for variability in the normal range of feature values over age
groups. The reader is referred to [10] for further algorithmic details
regarding the AdaBoost-abstain procedure. The final adaptive boosting
model consisted of m=100 decision stump base classifiers.

4.2. Gradient boosting

We trained a separate classifier using gradient boosting, where h(x)
are recursively constructed pseudo-residual models, fit to the gradient of
a specified loss function evaluated at Fm(x).

= − ∇h x y L y F x( ) ( , ( ))m m (4)

In particular, we use the XGBoost variation [11] of gradient tree
boosting [14], where CART models (classification and regression trees)
are used as base classifiers and a regularized learning objective is mini-
mized.
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Eq. (5) adds a regularization component, Ω(hk(x)), to the loss
function that controls the model complexity of learned trees, hk(x),
where K is the total number of trees. In Eq. (6), T refers to the number of
leaves in the tree, γ and λ are regularization parameters and w are the
leaf scores within the CART model. In our models, binary logistic loss
was specified as the loss function to optimize. Age was included as a
standard feature within the model allowing trees to make splits directly
based on age information. Each tree also incorporated branching in-
formation based on whether feature values were missing or not, thereby
directly handling missing information without requiring imputation. A
random search [15] was used to select hyperparameters such as γ and λ,
node splitting weights, number of feature columns to sample and
maximum tree depth. The set of hyperparameters that optimized the
cross-validation AUROC score (Section 3.3.1) were selected to create a
final classifier. In total, 10,000 invocations of random search took
place. The final gradient boosted model consisted of m=16 trees with
a maximum depth of 3.

4.3. Ensemble

Finally, a simple ensemble model was created from the two
boosting-based classifiers, where the average of each of the boosting
models’ prediction probabilities was used to make a final prediction.

5. Modified bedside PEWS baseline

We compare our algorithm's performance to a modified Bedside
PEWS System. Bedside PEWS [8] calculates a range of sub-scores for
inputs such as heart rate, systolic blood pressure, capillary refill, re-
spiratory rate, respiratory effort, oxygen saturation and oxygen therapy.
For some inputs (heart rate, systolic blood pressure and respiratory
rate) sub-scores are affected by a patient's age group. Experts defined
appropriate cut-off points for each scoring item during the Bedside
PEWS systems creation and validation [8].

Bedside PEWS was selected over other pediatric early warning score
systems for comparison, as it was validated on predicting unplanned
admissions to the PICU [16]. Furthermore, the inputs of the bedside
PEWS system are similar to the inputs required by our algorithm,
however, some modifications were necessary. In particular, capillary
refill and respiratory effort were removed as input, as they were not
available within our datasets.

Given these modifications, it was necessary to compute an appro-
priate modified PEWS cut-off score in which instances that match or
exceed the score are classified as transfer and instances that result in a
score less than the cut off score are classified as no transfer. To do so,
we computed PEWS scores on our training data for all available inputs,
using the expert defined scoring system from [8]. We then evaluated
each PEWS score as a potential threshold and determined the optimal
cut-off score that balanced sensitivity and specificity on the training
dataset. An optimal cut off score of 2 was found for the modified PEWS
system. This cut off score was used to predict transfer on the test sets.

6. Results

Tables 2 and 3 present accuracy, sensitivity, specificity and AUROC
results for the Desert and Thunderbird held-out test sets, respectively.
Greatest values for each column are highlighted in bold. Recall that
20% of encounters from the Desert facility were held-out as test data
and 100% of encounters from the Thunderbird facility were used as test
data. For both test sets, the class prevalence is balanced, i.e. there are an
equal number of instances that resulted in transfer compared to those
that did not. As such, an uninformed classifier that simply predicted no
transfer would achieve an accuracy of 50%.

For accuracy, sensitivity and specificity, a default threshold of 0.5
probability was used to make a prediction of transfer for each of the
gradient boosting, adaptive boosting and ensemble classifiers. Further
tuning of this threshold on the training set could potentially allow for
improved results. Tables 2 and 3 show that the Ensemble achieves the
greatest accuracy on both test datasets, 0.78 and 0.77 respectively.
Further, for the Desert dataset a slight improvement in AUROC is wit-
nessed using the ensemble, 0.84, whereas for the Thunderbird test set
the ensemble achieved the same AUROC performance as the adaptive
boosting model. In all evaluation categories one of the boosting models
always outperforms the modified bedside PEWS baseline, except for

Table 2
Final results for Desert facility test dataset.

Accuracy Sensitivity Specificity AUROC

Modified PEWS 0.74 0.73 0.75 0.75
Gradient boosting 0.77 0.78 0.75 0.83
Adaptive boosting 0.69 0.78 0.60 0.81
Ensemble 0.78 0.83 0.73 0.84
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specificity in Table 2, where modified PEWS achieves the same greatest
specificity as the gradient boosting model. In general, the boosting al-
gorithms’ results between the two facilities are not markedly different,
indicating that the models constructed were able to generalize between
facilities.

Fig. 1 shows the receiver operating characteristic for the Desert
(left) and Thunderbird (right) test sets. It can be seen that when con-
sidering a tradeoff between true positive and false positive rate, the
Ensemble (green line) would achieve slightly better performance for a
sensible false positive range selection, e.g. approx. 20% false positives.

Finally, in Fig. 2 we present 16 time series plots — the first eight
patients in the test set that did not result in transfer are displayed in the
above two rows and the first eight patients that did result in transfer are
displayed in the two rows below. Each plot shows a 6 h observation
window where the ensemble model made a prediction about the like-
lihood of transfer whenever a new clinical measurement was recorded.
For the patients that were transferred, transfer occurred 2 h later within
each plot.

It can be seen that the transfer prediction values are greater overall
for the eight patients that were transferred, compared to those that
were not transferred. Also, noticeable is the fact that patients who were
transferred were more closely monitored by clinical staff, resulting in a
greater number of vital sign measurements within each 2 h window. In
the top half of Fig. 2, there is only one case where probability of transfer
exceeds 0.6 (top row, third chart from the left). Given the number of
recordings made for this patient, it does seem that deterioration was
initially suspected by the care team. The probability predictions de-
crease towards the end of the observation window, making it seem
likely that this patient stabilized and transfer was eventually not re-
quired.

7. Discussion and related work

Our work has focused on the problem of predicting transfer for
pediatric populations from the hospital general ward to the PICU.
Specifically, using six vital sign values as input, as well as age and three
derived measures, we constructed two boosting-based classifiers. From
these classifiers a simple ensemble was created based on prediction
averaging. We compared the performance of all boosting-based classi-
fiers to a modified bedside PEWS baseline and showed that improve-
ments were witnessed in both accuracy and AUROC on two hidden test
datasets.

The results presented showed that similar values were achieved on
the 20% held-out test set from the Desert facility compared to the 100%
held-out test data from the Thunderbird facility. This provides initial
evidence for model generalizability, however, further evaluation be-
tween facilities at separate locations within the United States, as well as
internationally would provide stronger support of model general-
ization.

While the generalizability of the results are encouraging, a deployed
system within a hospital environment that utilized our algorithm would
likely still result in a reasonably large number of false positives, based
on final threshold selection. In a pediatric general ward setting, a
greater number of false positives may be more tolerable than false ne-
gatives. However, this choice would need to be at the discretion of the
medical care provider and their institution.

There have been previous efforts at using machine learning to
construct PICU transfer prediction classifiers. Ref. [17] looked at the
problem of predicting PICU transfer for newly hospitalized children. In
particular, they used a logistic regression classifier to gauge the like-
lihood of transfer to the PICU in first 24 h of a child's hospital stay. All
inputs into their algorithm (including vital sign information) were as-
signed into categories, requiring the specification of cut-off boundaries.
They evaluated their algorithm within a single hospital setting and
achieved strong prediction performance compared to baseline modified
PEWS systems. In this work, we have constructed classifiers that work
directly with vital sign measurements as input. Further, we have en-
sured that our algorithm has been evaluated on retrospective data
collected at separate hospital facilities.

There exists a greater body of work for detecting deterioration in
adult populations. Churpek and colleagues have published extensively
[18,6] on the training and evaluation of machine learning algorithms

Table 3
Final results for Thunderbird facility test dataset.

Accuracy Sensitivity Specificity AUROC

Modified PEWS 0.69 0.68 0.70 0.73
Gradient boosting 0.76 0.73 0.78 0.83
Adaptive boosting 0.74 0.84 0.63 0.85
Ensemble 0.77 0.80 0.74 0.85

Fig. 1. Receiver operating characteristic for Desert facility (left) and Thunderbird facility (right).
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for predicting adverse events in a clinical setting for adult populations.
In [6], they compared numerous classifiers to the Modified Early
Warning Score (MEWS) [2]. To train their machine learning models
they used vital sign measurements as input, as well as lab result values
and demographic information (i.e. age). They found that a random
forests classifier performed the best, reporting an AUROC of 0.8. The
work presented in [6] was developed for adult populations (where the
average patient age was 60 years old), whereas our algorithm is tailored
to pediatric populations where baseline physiological measurements
and normal ranges can differ markedly. Further, their work looked at
predicting events of transfer to ICU, as well as cardiac arrest and
mortality, whereas our algorithm was trained for the purpose of

predicting transfer from the general ward to the PICU.
In a separate work, Ref. [18] investigated the importance of trend

information for predicting deterioration in hospitalized adults. Here,
they used only physiologic vital sign information as input to their
models and compared the inclusion of trend information such as the
change in current value from previous value, mean and standard de-
viation of previous values and slope information. In general, they found
performance improved by including trend information. The work we
have presented requires only a single snapshot of physiologic vital sign
inputs to make a prediction about PICU transfer. The inclusion of trend
information could perhaps further improve our results for pediatric
populations, but care needs to be taken to ensure that bias is not

Fig. 2. Pediatric early deterioration indicator values output over 6 h observation windows for eight patients that were transferred (bottom) and eight patients that were not transferred
(top) to the PICU.

J. Rubin et al. International Journal of Medical Informatics 112 (2018) 15–20

19



introduced into the algorithm stemming from the increased frequency
of monitoring that typically occurs when patients are suspected of de-
teriorating by clinical care staff.

7.1. Limitations

Our work has the following limitations:

• The number of available instances that result in transfer to the PICU
was limited. To aid model training we have balanced our dataset to
ensure the number of transfer instances used during model training
match the number of non-transfer instances. This inevitably results
in discarding non-transfer encounters, which may potentially con-
tain useful information that can further improve model perfor-
mance. Currently, our models use only a single snapshot of phy-
siologic measurements from a deterioration encounter. It is possible
that performance could be improved by including an increased
number of snapshots occurring at various time points during the
deterioration period.

• As PEWS was not directly recorded in the electronic health records
used within our analysis, it was necessary to calculate modified
PEWS values from available data. The results presented, therefore,
are a comparison between our model and a modified PEWS system.
Comparison against original PEWS, extracted directly from the
electronic health record, would further validate our results.

• While we have performed an inter-facility retrospective evaluation,
our models have only been evaluated on pediatric populations from
two hospitals both situated in the United States. Further evaluation
is required to ensure the results obtained generalize across pediatric
populations at other hospitals, as well as in other countries.

8. Conclusion

We have presented two automated early deterioration models based
on adaptive and gradient boosting that accept physiologic vital sign
measurements and patient age information as input in order to make a
prediction about the likelihood of a patient being transferring from the
general ward to the PICU. A third model, based on ensemble averaging,
generally led to improvements in both accuracy and area under the
receiver operating characteristic curve. We showed that data-driven,
machine learning algorithms can improve PICU transfer prediction ac-
curacy compared to expertly defined systems, such as a modified PEWS,
but care must be taken in the training of such approaches to avoid in-
advertently introducing bias into the outcomes of these systems.
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Summary points

What was already known on the topic?

• Many pediatric early warning score systems exist for assessing pa-
tient deterioration.

• The majority of PEWS systems are developed based on expert de-
fined rules where cutoff ranges are defined for each input into the
system.

What has this study added to the body of knowledge?

• Data-driven machine learning algorithms can improve PICU transfer
prediction accuracy compared to expertly defined systems such as
PEWS, but care must be taken in the training of such approaches.

• Our analysis confirms that clinical practice affects data collection
frequency and availability – this in turn will affect the outcome of
algorithms trained on collected electronic health record data.

• A particular example, is the increased frequency of monitoring that
is witnessed in a large proportion of patients leading up to transfer
to the PICU, due to suspicion of deterioration by clinical care staff. If
this is not considered carefully, bias can inadvertently be introduced
into data-driven systems, e.g. detecting deterioration simply due to
increased frequency of measurement.
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