
Time, Frequency & Complexity Analysis for Recognizing
Panic States from Physiologic Time-Series

Jonathan Rubin Rui Abreu Shane Ahern Hoda Eldardiry Daniel G. Bobrow
{rubin, rui, heldardi, bobrow}@parc.com, shane@shaneahern.com

Palo Alto Research Center, Inc.
California, United States

ABSTRACT
This paper presents results of analysis performed on a phys-
iologic time-series dataset that was collected from a wear-
able ECG monitoring system worn by individuals who suffer
from panic disorder. Models are constructed and evaluated
for distinguishing between pathologic and non-pathologic
states, including panic (during panic attack), pre-panic (pre-
ceding panic attack) and non-panic (outside panic attack
window). The models presented use data fusion to combine
both traditional time and frequency domain heart rate vari-
ability analysis together with nonlinear/complexity analysis.
The best performing model is shown to be a random forest
classifier that achieves an accuracy of 97.2% and 90.7% for
recognizing states of panic and pre-panic, respectively. The
models presented have application in pervasive and ubiqui-
tous mobile and wearable health management systems.

CCS Concepts
•Applied computing → Health informatics; Health
care information systems; •Human-centered com-
puting → Ubiquitous computing;

Keywords
Physiological data analysis; ECG analysis; Heart rate vari-
ability; Feature extraction; Data fusion; Classification

1. INTRODUCTION
Heart rate variability (HRV) measures fluctuations that

occur in the intervals between heartbeats. HRV analysis has
been shown to have discriminatory power in distinguishing
pathologic versus non-pathologic states such as schizophre-
nia [1], depression [12], stress [16] and heart disease [8, 22].
Traditional HRV analysis relies on computing time-domain
statistical parameters to characterize underlying distribu-
tions, as well as frequency-domain (Fourier and wavelet-
based) power spectral densities for various predefined spec-
tral bands. In additional to traditional time and frequency
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domains, complexity/nonlinear analysis has emerged as a
useful approach for quantifying heart rate dynamics. Com-
plexity analysis captures information about nonlinear dy-
namical properties and interactions within systems. Unlike
traditional time and frequency domain analysis, complexity
analysis does not require that the data be stationary or gen-
erated by a linear process and it has been shown to reveal
“hidden” structural information [8], not necessarily present
within traditional HRV analyses.

The main contribution of this work is the presentation
and evaluation of a collection of models that rely on data fu-
sion of traditional (time and frequency domain) HRV anal-
ysis together with complexity/nonlinear analysis in order
to distinguish between pathologic and non-pathologic states
associated with panic disorder. We apply time-domain,
frequency-domain and complexity analysis to distinguish be-
tween states of panic (during panic attack), pre-panic (one
hour before panic attack onset) and non-panic (outside panic
attack window) in physiologic time-series data. We utilize a
physiologic time-series dataset, collected from a population
of individuals suffering from panic disorder, where ground
truth information was obtained to indicate onset of panic
attack symptoms. The dataset was collected from an ambu-
latory study using a wearable ECG monitoring system [26].

Our analysis compares separately trained time-domain,
frequency-domain and complexity-domain models, as well as
the fusion of features from all domains to produce combined
models. Multiple models are trained using various classifiers
and cross validation performed to report classification accu-
racy. The best performing model is shown to be a random
forest classifier, which achieves an accuracy of 97.2% and
90.7% for recognizing states of panic and pre-panic, respec-
tively.

The predictive models and analysis presented in this work
have applications within affective wearable devices and mo-
bile mental health monitoring systems. For example, detec-
tion of panic states could be utilized within a pervasive wear-
able system intended for condition management and moni-
toring. Also, detection of pre-panic states (up to one hour
before panic attack onset) could be used within an mHealth
system capable of delivering timely, useful interventions.

This paper is organized as follows. Section 2 provides
background information about ECG, HRV and complex-
ity/nonlinear analysis. Related works are also described
that identify pathologic states within physiologic time-series
data. Section 3 gives an overview of the data analysis that
took place. Section 4 describes, in detail, how features were
extracted from the time and frequency domains and com-



plexity analysis. Experimental results and discussion are
presented in Section 5, where a comparison of each model
constructed is given. Section 6 provides final conclusions.

2. BACKGROUND & RELATED WORK

2.1 Autonomic Nervous System & Heart Rate
Variability

The autonomic nervous system is a control system whose
functions include control of respiration and cardiac regula-
tion. The autonomic nervous system consists of the sympa-
thetic nervous system (often referred to as the fight-or-flight
system) and the parasympathetic nervous system (or the
rest-and-digest system). The sympathetic nervous system
has the effect of increasing heart rate, whereas the parasym-
pathetic nervous system slows down heart rate. Compet-
ing interactions and influences from both sympathetic and
parasympathetic activity leads to variability in heart rate.

Inter-beat (RR) intervals can be measured by determin-
ing the interval between neighboring R waves from the QRS
complex in an electrocardiogram (ECG), illustrated in Fig-
ure 1. This results in a time series consisting of RR intervals.

Figure 1: Time intervals (in milliseconds) between
R waves in ECG (Source [20]).

HRV analysis captures information about the variability
that exists within the RR time series and can provide im-
portant insight about the state of health of an individual.
Generally speaking, high variability represents healthy be-
havior, whereas lack of variability often can indicate poor
health or disease [8]. Traditional time-domain HRV analysis
calculates statistical parameters (e.g. means and variances)
from inter-beat (RR) interval time series data. Frequency-
domain analysis can indicate whether observed variability
reflects sympathetic or parasympathetic activity. HRV is
also governed by complex nonlinear interactions. As such,
methods used to analyze nonlinear dynamical systems have
been applied to physiology [22] and disease [6]. Compu-
tational methods from nonlinear dynamics, fractal analysis
and chaos theory have the potential to unveil “hidden” in-
formation, not necessarily revealed by traditional forms of
statistical and frequency analysis [8, 22].

2.2 Nonlinear/Complexity Background
The basis of nonlinear time-series analysis involves per-

forming a time-coordinate embedding [21]. The time-
coordinate embedding method attempts to reconstruct the
phase space of a dynamical system from a sequence of ob-
servations of its state. The phase space of a dynamical
system represents all possible system states. Given a one-
dimensional time series of state measurements (such as the

interval between heart beats), x(1), x(2), . . . , x(N), embed-
ding within a higher dimension takes place by constructing
delay vectors:

xi =< x(i− (m− 1)τ), . . . , x(i− τ), x(i) > (1)

To construct delay vectors, Eq. (1) above requires the se-
lection of two parameters, including the embedding dimen-
sion, m, and time lag τ . Delay vectors transform the orig-
inal one-dimensional time-series measurements into multi-
dimensional reconstructed phase space. Takens’ theorem [27]
specifies that for the right selection of m and τ , the embed-
ded dynamics are diffeomorphic (i.e. they have the same
topology) to the original state-space dynamics. The result
is that reconstruction preserves certain properties of the un-
derlying dynamical system. In particular, dynamical invari-
ants are the same across the original underlying dynamical
system and the dynamics in reconstruction space given by
time-coordinate embedding. Figure 2, illustrates graphically
the results of performing time-coordinate embedding from
measurements of one state variable of the Lorenz attractor.

Figure 2: (a) Phase space trajectory of the Lorenz
attractor, compared to (b) its reconstruction using
time-coordinate embedding (Source [13]).

One caveat, however, is that in order to achieve appro-
priate reconstruction, the original time series measurements
must be a smooth, generic function of at least one state vari-
able and must be uniformly sampled in time. Fortunately,
this condition does not typically need to be fully satisfied to
achieve satisfactory results in practice.

Performing time-coordinate embedding on inter-beat
(RR) interval time-series data allows the computation of
dynamical invariants that can be used to characterize heart
beat dynamics. Section 4.4 (Feature Extraction) details how
dynamical invariants, such as the maximal Lyapunov expo-
nent, correlation dimension and sample entropy are com-
puted from reconstructed phase space and utilized as fea-
tures within classifiers for distinguishing between pathologic
and non-pathologic states in physiologic time-series data.

2.3 Related Work
Previous works have employed traditional time and fre-

quency domain heart rate variability analysis on physio-
logic time-series data collected from individuals with panic
disorder. [15] collected 24-hour ECG recordings from a
population of panic disorder patients and healthy controls.
Recordings were analyzed between populations in time and
frequency domains. Analysis revealed decreased levels of
sympathetic nervous system activity, as evidenced by signif-



Measurement Feature Name Description
HR hr Average heart rate
RR meanrr Average RR interval
SDNN sdnn Standard deviation of RR intervals, calculated over full time series
SDANN sdann Standard deviation of RR interval averages, calculated over windows
SDNNIDX sdnnidx Average of RR intervals standard deviations, calculated over windows
pNN50 pnn50 Number of ∆RR larger than 50ms divided by total number of ∆RR
SDSD sdsd Standard deviation of ∆RR, calculated over full time series
rMSSD rmssd Square root of the average of the squares of ∆RR, calculated over full time series
IRRR irrr Difference between first and third quartile of ∆RR, calculated over full time series
MADRR madrr Median of ∆RR values, calculated over full time series

Table 1: Time-domain: Statistical features

icantly reduced low frequency power (LF) in panic patients
relative to the control group. [23] compared multiple popu-
lations with a range of anxiety disorders to healthy controls.
Populations included individuals with panic disorder, gener-
alized anxiety, social anxiety and obsessive-compulsive dis-
order. Baseline comparisons showed that individual with
anxiety disorders showed significantly reduced heart rate
variability compared to controls. Neither [15] nor [23] in-
cluded complexity/nonlinear domain measurements within
their analysis and both focused on between-group compar-
isons of panic disorder populations and healthy controls.

Instead of between-group comparisons, [17, 25] performed
within-group analysis on a population of panic disorder pa-
tients. State changes leading up to panic attack onset
(pre-panic) were compared with baseline non-panic states.
Change-point analysis showed that significant changes in
physiologic measurements occurred in the time frame lead-
ing up to panic attack onset and that the same changes were
not witnessed during baseline non-panic intervals. Heart
rate, HRV, PCO2, tidal volume and breathing rate were in-
cluded in the analysis performed by [17, 25]. However, a
thorough time, frequency and complexity HRV analysis was
not performed.

Traditional time and frequency domain HRV analysis,
together with complexity/nonlinear analysis has been per-
formed for both within-group and between-group compar-
isons for other pathologic states, including depression [12],
stress [16], heart disease [8, 22] and schizophrenia [1].

3. ANALYSIS OVERVIEW
The physiologic dataset used within this analysis was col-

lected during an ambulatory study [26] from a population
of individuals with panic disorder who experienced regular
panic attacks. Subjects wore a wearable 1-lead ECG (250
Hz) monitoring device for up to three weeks. During that
time, ground truth information was reported by individuals
when panic attacks took place. In total, 19 panic attacks
were recorded from 7 study subjects. We refer the reader to
[26] for a more comprehensive study description.

First, the inter-beat (RR) time-series data was passed
through a simple sliding window artifact filter to remove
outliers and ensure acceptable physiological values. RR val-
ues that resulted in heart beats per minute of less than 25
or greater than 200 bpm were removed. The dataset was
then segmented into three classes including panic (begin-
ning when panic attack onset was reported and continuing
for ten minutes), pre-panic (one-hour before panic attack
onset) and non-panic (all remaining intervals outside a six

hour window surrounding panic attack onset).
Following data segmentation, overlapping sliding windows

were run over the data. Feature extraction was performed
and feature vectors created. Each sliding window was la-
beled as panic, pre-panic or non-panic. All sliding windows
used 300s intervals and step sizes varied based on the win-
dow’s class. Sliding window step sizes of 10s, 30s and 300s
were used for the panic, pre-panic and non-panic classes,
respectively. Variable step sizes were used due to the differ-
ence in lengths of data available per class, e.g. ten minutes
for panic data and one hour for pre-panic. Variable step
sizes allowed an increase in the amount of data available to
train and evaluate models, however, they do not need to be
specified to make predictions on new test data instances. In
total, 731, 1762 and 1295 panic, pre-panic and non-panic
respective windows were used in the analysis.

Within each sliding window, time-domain, frequency-
domain and complexity-based features were extracted. A
total of 38 features were extracted within each window. Sec-
tion 4 explains in detail the feature extraction that took
place within each domain. Separate models were trained
for time-domain only (12 features), frequency-domain only
(7 features) and complexity/nonlinear domain only windows
(19 features). A combined model that fused all 38 features
from each domain was also constructed.

Multiple classifiers were employed for each of the mod-
els, including passive aggressive classifier, gradient boost-
ing, decision trees, ridge classifier, support vector machines,
random forest, k-nearest neighbor and logistic regression.
Before classification each feature was transformed using a
standard (mean normalization) scaler. Default parameters
were accepted for each classification algorithm (provided by
python’s scikit-learn machine learning library). No further
parameter tuning was applied. Finally, stratified 10-fold
cross validation was used to evaluate each classifier.

The final processed datasets together with the IPython
notebooks used to perform the analysis are made publicly
available as a github repository at the following location:
https://github.com/jrubin01/PervasiveHealth-2016.

4. FEATURE EXTRACTION

4.1 Time-domain: Statistical
(10 features)

Table 1 lists all the statistical parameters derived from a
standard time-domain analysis of the RR time series. ∆RR
refers to the differences between RR values, i.e. ∆RRi =
RRi+1 −RRi.



4.2 Time-domain: Geometric
(2 features)

Apart from statistical methods, geometric methods can
also be used to capture time-domain features. Geometric
methods capture information using the probability density
distribution of the RR time series. Grouping first occurs by
assigning RR intervals into appropriate bins. We selected
the standard bin size of 7.8125 ms, which corresponds to

1
128

th of a second. A distribution histogram is created by
recording the frequency of RR intervals per bin.

Let D be the distribution histogram, then D(X) re-
flects the number of RR intervals assigned to bin X. Let
Y = D(X), be the maximum of the sample density distribu-
tion. Using this information, two geometric measurements
are extracted from the distribution histogram:

4.2.1 HRV triangular index
The HRV triangular index is given by the integral of the

density distribution divided by the maximum of the density
distribution. This is approximated from the distribution

histogram by:
∑
D(X)
Y

. Larger values represent lower peaks
and increased variability, whereas smaller values would indi-
cate a larger peak and less variability in the sample density
distribution.

4.2.2 TINN:
The triangular interpolation of the NN (RR) interval his-

togram (TINN) is computed by first performing a triangular
interpolation over the distribution histogram and maximum
sample density, Y , followed by calculating the baseline width
of the distribution, i.e TINN = M −N , from Figure 3.

Figure 3: Computation of HRV triangular index
and TINN using sample density distribution (Source
[19]).

4.3 Frequency-Domain
(7 features)

Frequency-domain analysis is performed using the Fourier
transform to extract information about how power dis-
tributes as a function of the frequencies found in the inter-
beat (RR) time-series. Power spectral density is computed
for a range of predefined frequency bands using the Short
Time Fourier Transform (STFT) over sliding windows.

Frequency-domain analysis can be used to distinguish be-
tween variability in heart rate being attributed to either

sympathetic or parasympathetic activity of the autonomic
nervous system. The following frequency bands were used
within the spectral analysis and have largely been estab-
lished within the existing HRV literature [18, 7]:

(ULF) Ultra Low Frequency [0 – 0.003 Hz]

(VLF) Very Low Frequency [0.003 – 0.03 Hz] Thought
to be related to the renin-angiotensin system that reg-
ulates blood pressure (although this is disputed).

(LF) Low Frequency [0.03 – 0.15 Hz] Believed to largely
reflect sympathetic activity, with some parasympa-
thetic activity contributing.

(HF) High Frequency [0.15 – 0.4 Hz] Believed to reflect
parasympathetic activity.

Three further frequency-domain parameters are derived
from the above values. LFnu and HFnu rescale LF and
HF, such that LFnu + HFnu = 100 and LF/HF reflects the
normalized power ratio. Large LF/HF ratios (i.e. > 10) can
be an indicator of chronic stress.

4.4 Nonlinear domain: Reconstruction space
(5 features)

Recall from Section 2.2 that the purpose of reconstructed
phase space is to compute dynamical invariants to charac-
terize system dynamics. Each of the nonlinear time-series
dynamical invariants listed below are computed in the fol-
lowing similar manner. First, parameters m and τ are se-
lected to perform a time coordinate embedding. A modi-
fied false nearest neighbors method, Cao’s algorithm [2], is
used to select the embedding dimension, m. The time lag
value that results in minimizing mutual information is se-
lected for the parameter τ . Next, ε-neighborhoods, Nε(xi)
are constructed for a number of delay vectors in reconstruc-
tion space. An ε-neighborhood consists of all neighboring
delay vectors surrounding the vector, xi, within a specified
radius, ε. We define the set Nε(xi) as follows:

∀j 6=i, xj ∈ Nε(xi), if ‖xi − xj‖ < ε

Choice of the exact distance function used can vary. The
total number of items in each ε-neighborhood is summed,
Cm(ε). Summations are performed for various values of ε
and the results are plotted on a log-log plot, where the x-
axis represents log ε (where ε varies from small to larger
values) and the y-axis represents logCm(ε). The slope of
the linear scaling region in the resulting log-log plot acts as
an estimate for the nonlinear-domain parameter in question.

4.4.1 Correlation Dimension
Correlation dimension, D2, quantifies the fractal dimen-

sionality of the reconstructed phase space occupied by delay
vectors. The Grassberger-Procaccia algorithm [9, 10] is used
to estimate correlation dimension, beginning with computa-
tion of correlation sums:

Cm(ε) =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ(ε− ‖xi − xj‖) (2)

where the Euclidean norm is used to compute the distance
between delay vectors, xi and xj , in reconstruction space, N



is the total number of delay vectors, ε is the specified radius
and Θ(x) is the Heaviside function:

Θ(x) =

{
1, if x > 0
0, if x ≤ 0

Correlation dimension is represented by D2 in the rela-
tionship: Cm(ε) ∝ εD2. Therefore, D2 can be estimated
as the slope of the linear scaling region in the log-log plot
produced by varying radius, ε.

4.4.2 Sample Entropy
As a single scale value, sample entropy quantifies the de-

gree of predictability or regularity in a time-series [24, 3].
Sample entropy can be computed using the correlation sum
from Eq. (2), where Chebyshev distance is used to calculate
the distance between delay vectors and radius, ε, is chosen
to be some proportion of the standard deviation of the time-
series.

SampleEn is defined as the natural logarithm of the ra-
tio between the average number of delay vectors within ε-
neighborhoods for embedding dimension, m, compared to
the average number of delay vectors within ε-neighborhoods
for embedding dimension, m+ 1.

SampleEn = ln

(
cm(ε)

cm+1(ε)

)
(3)

In other words, SampleEn characterizes the proportion of
similar time series sequences of length m, compared to the
number of similar time series sequences of length m+ 1.

4.4.3 Maximal Lyapunov Exponent
The maximal Lyapunov exponent quantifies the strength

of chaos within a system by measuring the rate at which
trajectories diverge exponentially over time. The maximal
Lyapunov exponent is represented by λ in the following re-
lationship:

δ∆t ' δt0e
λ∆t (4)

Here, δt0 is the distance between two delay vectors at time
t0, and δ∆t is the distance apart in the future after time span,
∆t

δt0 = ‖xi − xj‖
δ∆t = ‖xi+∆t − xj+∆t‖

Lyapunov exponents describe long-term behavior of a sys-
tem and are invariant under smooth transformations. They
can therefore be estimated from data after performing time
coordinate embedding. We use the Kantz algorithm [11],
which captures stretching factors over time, to estimate the
maximal Lyapunov exponent:

S(∆t) =
1

N

N∑
i=1

ln

(
1

|Nε(xi)|
∑

xj∈Nε(xi)
|xi+∆t,−1 − xj+∆t,−1|

)
(5)

where, xi, xj are delay vectors, Nε(xi) is the ε-neighborhood
surrounding delay vector xi and the notation xi,−1 refers to
the last element in vector xi.

A log-linear plot is composed by computing a variety of
stretching factors, S(∆t), for various time spans, ∆t. Each
∆t is plotted against its corresponding lnS(∆t). If a linear
scaling region exists in the log-linear plot, its slope can be
computed using linear regression and used to estimate the
maximal Lyapunov exponent.

4.4.4 Poincaré Plot
A Poincaré plot provides a simple method to visualize

and quantify variability within a time-series dataset. A 2-
dimensional phase space reconstruction is first applied for a
given τ and m = 2. For an inter-beat interval (RR) time-
series choice of τ = 1, the Poincaré plot depicts the corre-
lation between neighboring RR intervals. Fig. 4(a) shows
an example. Points on the diagonal identity line represent
times when an inter-beat interval, RRi, was followed by an
identical interval, RRi+1, i.e. no variability between neigh-
bors. By fitting an ellipse to the data, two parameters are
typically computed:

SD1 : the standard deviation along the axis perpendicular
to the identity line. This value quantifies short-term
variability, and

SD2 : the standard deviation along the identity line. This
value quantifies long-term variability over the entire
RR series.

Figure 4: (a) Left: Poincare Plot, (b) Right: De-
trended Fluctuation Analysis

4.5 Nonlinear domain: Fractal Analysis
(2 features)

4.5.1 Detrended Fluctuation Analysis
Detrended Fluctuation Analysis (DFA) was developed by

Peng et al. [22] as a modified root mean square analysis to
quantify the amount of self-similarity present in a time se-
ries. DFA measures fluctuations over varying time intervals
within a time series and compares how fluctuations in small
time intervals relate to fluctuations in larger intervals. Typ-
ically, two scaling exponents, α1 and α2, are computed that
capture self-similarity relationships present in data. α1 de-
scribes relationships over short time scales and α2 describes
relationships over longer time scales. An advantage of DFA
is that it can be applied to non-stationary time series data,
such as physiologic data. Given a sequence of inter-beat
(RR) intervals, RR1, RR2, . . . , RRN , first the time series is
integrated:

y(k) =

k∑
i=1

(RRi −RR) (6)

The integrated time series is then divided into intervals
of equal length, n, and a linear regression performed within
each segment to determine trend. Detrended fluctuation is



Measurement Feature Name Description
Recurrence Rate rprec Percentage of recurrence points in a Recurrence Plot
Determinism rpdet The percentage of recurrence points which form diagonal lines
Laminarity rplam The percentage of recurrence points which form vertical lines
Ratio rpratio The ratio between determinism and recurrence rate
Longest diagonal line rplmax Length of the longest diagonal line
Longest vertical line rpvmax Length of the longest vertical line
Average diagonal line length rplmean The average length of the diagonal lines
Adjusted diagonal line length rplmeanwithoutmain The average length of the diagonal lines, excluding main diagonal
Divergence rpdiv Inverse of longest diagonal line
Trapping time rpvmean Average length of the vertical lines.
Entropy rpentr Shannon entropy of the probability distribution of diagonal line lengths
Trend rptrend The paling of the recurrence plot towards its edges

Table 2: Recurrence quantification analysis feature extraction

calculated as the root mean square difference between the
integrated time series, y(k), and its local trend, yn(k):

F (n) =

√√√√ 1

N

N∑
k=1

(y(k)− yn(k))2 (7)

F (n) is calculated over many time scales, n, and a log-
log plot constructed, with log10 n plotted on the x-axis and
log10 F (n) on the y-axis. An example log-log plot is shown
in Figure 4(b) with fitted slopes α1 and α2. α1 (short term
fluctuations) is the slope obtained from the range 4 ≤ n ≤ 16
and α2 (long term fluctuations) is given by the slope within
the range 16 ≤ n ≤ 64.

4.6 Nonlinear domain: Recurrence Quantifi-
cation Analysis
(12 features)

Recurrence refers to the repetition of events within a
time series. Recurrence plots [4] can be used to visualize
and quantify recurrence by following a trajectory in recon-
structed phase space and observing when it returns to the
ε-neighborhood of points it has visited before. A recurrence
matrix is computed as follows:

Mij = Θ (ε− ‖xi − xj‖) (8)

where xi and xj are delay vectors and ε determines the size
of the neighborhood. Mij = 1, if the trajectory within re-
constructed phase space returns at time j to the same ε-
neighborhood it was in at time i, otherwise Mij = 0. The
recurrence matrix can be visualized by plotting black points
where Mij = 1 and white points where Mij = 0.

Recurrence can be quantitatively characterized by ex-
tracting various statistical parameters from a recurrence plot
matrix. Table 2 lists each parameter that was extracted from
recurrence plots and utilized within a feature vector for per-
forming eventual classification. Table 2 has been adapted
from [14] and [5], which is the software package we used to
perform recurrence quantification analysis.

5. RESULTS
Table 3 presents accuracy results for the trained panic

prediction models based on stratified 10-fold cross valida-
tion. The results shown are from globally trained models
(i.e. not subject specific) performing binary classification of
panic vs. non-panic instances. Comparisons are provided

for the time, frequency and nonlinear domains, as well as
the combined domain model. In total, eight classifiers are
evaluated, as well as a baseline classifier that simply always
predicts the most frequently occurring class. In all cases,
the random forrest classifier is the best performing (high-
lighted in bold). Further, for all classifiers, use of the com-
bined model that fuses features together from all domains,
results in at least some level of performance improvement.
The top performing combined model random forrest classi-
fier achieves an accuracy of 97.2%.

Table 4 provides equivalent accuracy results for the pre-
panic prediction models. Results shown are from globally
trained models performing binary classification of pre-panic
vs. non-panic instances. Once again, the random forrest
classifier achieves the greatest accuracies, except in the case
of the frequency-domain only, where the gradient boosting
classifier performs best. The combination of domains again
achieves the best accuracy for all classifiers and the top per-
forming random forrest classifier achieves an accuracy of
90.7%.

Next, we investigated feature importance from the top
performing random forrest classifiers. Fig. 5 shows the rel-
ative importance of all 38 features for both panic (left) and
pre-panic (right) prediction models. In both cases, Shannon
entropy calculated from recurrence quantification is identi-
fied as the most discriminatory feature. Mean and median
inter-beat RR values from the time-domain are also rated
highly, as well as average heart rate for the panic prediction
model.

5.1 Discussion
The results of our analysis show that by combining time,

frequency and nonlinear domain parameters, >90% accu-
racy can be achieved when distinguishing between panic,
pre-panic and non-panic states in physiologic time-series
data. Greater accuracy is achieved recognizing panic states
compared to pre-panic. It makes sense that physiological
measurements recorded during a panic attack would differ
more markedly from non-panic data, compared with mea-
surements leading up to panic attack onset. Our results fur-
ther show that separate time, frequency and nonlinear do-
mains produce models which vary in classification accuracy.
The frequency-only domain produces models with the lowest
accuracy. Tables 3 and 4 show that both time and nonlinear
domains outperform frequency-domain models for all clas-
sifiers. For panic prediction models, the nonlinear-domain



Model Time-domain only Frequency-domain only Nonlinear-domain only Combined
Passive Aggressive 0.620 0.564 0.691 0.727
Gradient Boosting 0.887 0.744 0.931 0.958
Decision Tree 0.905 0.782 0.913 0.931
Ridge Classifier 0.741 0.692 0.737 0.818
Support Vector Machine 0.814 0.698 0.877 0.922
Random Forest 0.948 0.795 0.950 0.972
k-Nearest Neighbor 0.894 0.741 0.899 0.948
Logistic Regression 0.740 0.697 0.753 0.825
Baseline 0.639 0.639 0.639 0.639

Table 3: Global model: panic vs. non-panic accuracy scores

Model Time-domain only Frequency-domain only Nonlinear-domain only Combined
Passive Aggressive 0.604 0.565 0.684 0.714
Gradient Boosting 0.802 0.700 0.857 0.887
Decision Tree 0.788 0.668 0.834 0.873
Ridge Classifier 0.705 0.647 0.787 0.806
Support Vector Machine 0.756 0.658 0.837 0.865
Random Forest 0.820 0.688 0.871 0.907
k-Nearest Neighbor 0.809 0.683 0.851 0.874
Logistic Regression 0.707 0.654 0.796 0.813
Baseline 0.576 0.576 0.576 0.576

Table 4: Global model: pre-panic vs. non-panic accuracy scores

Figure 5: (a) Panic prediction model feature importance, (b) Pre-panic prediction model feature importance

results in greater accuracies over the time-domain for all
but one classifier (ridge classifier) and for pre-panic pre-
diction models, nonlinear-domain features always improve
accuracy over time-domain features. The improved accu-
racy of nonlinear-domain models over time and frequency
domains is likely due to the fact that complexity analy-
sis is better able to handle non-linearity, as well as non-
stationarity introduced into the data due to movement and
activity.

There are a number of limitations in the present analy-
sis. First, complexity analysis that relies on reconstructed
state space typically requires that the identification of lin-
ear scaling regions in log-log plots be performed with a
human-in-the-loop. For example, parameters such as corre-
lation dimension and maximal Lyapunov exponent require
the specification of an x-axis range where regression will
be performed. In the current complexity/nonlinear analy-
sis no attempt has been made to locate linear scaling re-
gions. Instead, regression is performed over the entire x-
axis range. Future analysis would benefit by introducing
either automatic or human-in-the-loop linear scaling region

identification. Second, it is possible that the size of the slid-
ing windows used may be too small to entirely reflect the
inter-beat (RR) interval behavior. In particular, parameters
such as SDANN and ULF are two standard HRV measures
where it is known that accuracy is limited given short win-
dow sizes [18]. These two limitations imply time and fre-
quency parameters produced during feature extraction, as
well as the dynamical invariants computed from complex-
ity analysis may not necessarily approximate characteris-
tics of underlying system dynamics. Nevertheless, while the
above limitations should be taken into account, the objec-
tive of the current work is not to precisely characterize heart
beat dynamics, but instead to utilize the computed parame-
ter values to accurately differentiate between pathologic and
non-pathologic states.

6. CONCLUSIONS
We have shown that panic, pre-panic and non-panic states

can be recognized with reasonable accuracy within phys-
iologic time-series data. Separate models were compared
based on feature extraction in time, frequency and nonlin-



ear/complexity domains. Models that combined domains
via data fusion achieved the greatest accuracy. While fur-
ther modifications and improvements are required, our anal-
ysis demonstrates the potential for these models to be uti-
lized within affective wearable health monitoring applica-
tions. Further, the approach presented and feature extrac-
tion methods used are applicable for classifying other types
of pathologic states from physiologic time-series data, in-
cluding emotional stress, depression and heart disease.
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